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ABSTRACT
Ensemble Selection uses forward stepwise selection from a
library of models to build a classifier ensemble that is op-
timised to a given performance metric. The algorithm has
received a lot of attention over time due to its excellent pre-
dictive performance in many data mining competitions, such
as the KDD cup and the Netflix data mining competition.
In this paper, we present two methods that were used in
our winning solution for the UCSD FICO 2010 data min-
ing contest. Our empirical and theoretical results show that
they can also be used for improving Ensemble Selection’s
performance in general. The proposed methods were im-
plemented using the WEKA machine learning package and
evaluated on a variety of real world data sets. The results
indicate that, by an appropriate application of each method,
Ensemble Selection’s predictive performance can be further
improved and its ensemble building cost can be significantly
reduced.

1. INTRODUCTION
The idea of ensemble learning is to build a predictive model
by combining multiple base models. Usually ensemble meth-
ods can be used for improving prediction performance. In
[9], the problem of classifier combination is considered in
the context of two main fusion scenarios: fusion of opin-
ions based on identical and on distinct representations. The
author states that “in both cases (identical and distinct rep-
resentations), the expert fusion involves the computation of
a linear or nonlinear function of the a posteriori class prob-
abilities estimated by the individual experts”. Therefore,
ensemble methods can be seen as methods for calculating
optimal weight for each base model in terms of certain goals,
such as classification accuracy. For a more detailed review of
recent development of ensemble-based classifiers, the reader
is referred to [1, 11].

Ensemble Selection is a method for constructing ensembles
from a library of base models [4]. The underlying procedure
of Ensemble Selection is simple. Firstly, base models are

built by using different machine learning algorithms, regard-
less of the parameter settings. Then, a construction strat-
egy, such as forward stepwise selection, is used to add to the
ensemble the models that improve its evaluation score. In
[3, 4], the authors showed a set of methods that can be em-
ployed to boost Ensemble Selection’s performance, including
selection with replacement, sorted ensemble initialization,
bagged ensemble selection, and probability calibration. In
this paper we carry on the research and propose two meth-
ods that can be used to improve Ensemble Selection’s per-
formance in general. The authors of [4] have given excellent
experimental results showing Ensemble Selection can be op-
timised toward many common evaluation metrics, such as
accuracy, root mean squared error, mean cross-entropy, lift,
precision/recall, F-score and ROC Area (AUC). Hence, the
methods proposed in this paper may be extended to those
metrics. For simplicity, we use AUC as our performance
metric for all experiments.

The rest of this paper is organized as follows. Information
about data sets used in this paper is given in Section 2.
In Section 3, we show the “ReTrainFull” strategy that can
be used to improve Ensemble Selection’s predictive perfor-
mance. In Section 4, we propose a method for Ensemble
Selection that dramatically reduces the computation time
spent on the model library construction stage but still keep-
ing Ensemble Selection’s good performance. Discussion and
future work are given in Section 5.

2. DATA SETS AND EVALUATION SETUP
Experiments in this paper are based on ten data sets. All
of them are real world data sets which can be downloaded
from the UCI machine learning repository [6], the UCSD
FICO contest website1 and the KDD Cup 2009 website2.
These data sets were selected because they come from very
different research and industrial areas, including social sci-
ences, games, life sciences, physical sciences, marketing and
E-commerce. Table 1 shows the basic properties of these
data sets.

To simplify and speed up the experiments, all five multiclass
data sets were converted to binary problems by keeping only
the two largest classes in each. After this conversion to bi-
nary problems, for data sets that are larger than 10,000 in-
stances, a subset of 10,000 instances is randomly selected for

1The University of California, San Diego and FICO 2010
data mining contest, http://mil.ucsd.edu/
2The KDD Cup 2009, http://www.kddcup-orange.com/



Table 1: Data sets: basic characteristics
Data set with release year #Insts Atts:Classes Class distribution (#Insts)

Adult 96 48,842 14:2 23% vs 77% (10,000)
Chess 94 28,056 6:18 48% vs 52% (8,747)

Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)

MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)
Original data sets Final binary data sets

our experiments. Table 1 (in the rightmost column) shows
the properties of the final data sets.

For each individual experiment, 100 WEKA [8] classifica-
tion algorithms are used for building the model library, in-
cluding: Naive Bayes, logistic regression with different ridge
values, AdaBoostM1 [7] with decision stump, bagging with
WEKA’s REPTree, random forests [2] with different num-
bers of random attributes, LibSVM [5] with different ker-
nels, J48 decision trees [10], and random trees with different
parameters.

3. ENSEMBLE SELECTION WITH MOD-
ELS RETRAINED ON FULL TRAINING
SET

The default construction strategy of Ensemble Selection uses
the hillclimb set to guide base model weighting. In [3, 4],
the authors have mentioned that once the base models to be
used in the ensemble are selected, the hillclimb set can be
put back in the training set, and then the base model with
a nonzero weight can be retrained based on the full training
set. Since the authors did not give results for examining if
this strategy improves the ensemble performance in general,
we therefore continued the research in this direction. In this
section, we compare three ensemble strategies:

The ES-Def strategy, is the original Ensemble Selection
algorithm with the default ensemble construction method
(as shown in Step 1 to Step 6, in Figure 1). The ES-
BestModel strategy is a strategy in which only the best
model trained with any of the base classifiers is included
in the final ensemble. The ES-ReTrainFull strategy em-
ploys the original Ensemble Selection algorithm with the
base models retrained on the full training set if a base model’s
weight is greater than zero (Step 1 to Step 8, Figure 1).

In this experiment, reported mean AUC scores and standard
deviations were calculated based on 66% (training) versus
34% (testing) split evaluation from five independent runs.
To get a clear picture of the result, we used 19 different se-
tups for the hillclimb set; the size of the hillclimb set ranged
from 5%, 10%, 15%,..., to 95% of the training set. Figure
2 shows the test set learning curves of the three strategies
based on 570 individual experiments (3 algorithms, 10 data
sets, 19 different hillclimb set ratios per data set).

From Figure 2, we can see a clear pattern showing that the

performance of ES-Def and ES-BestModel is related to the
size of the hillclimb set (hillclimb set ratio). For data sets
Chess-94, Connect-4-95, Covtype-98, Localization-10 and
Poker 07, the performance of ES-Def and ES-BestModel
declines as the hillclimb set ratio increases. For data sets
KDD-09, Magic-07, MiniBooNe-10 and UCDS-10, as the
hillclimb set ratio increases, the performance of ES-Def and
ES-BestModel firstly increases and then starts to drop af-
ter passing a peak. For all these four data sets, the per-
formance peak occurs when the hillclimb ratio is less than
40%. A small hillclimb set ratio, for example, using 10% or
fewer, usually yields good performance, such as in the Chess-
94, Connect-4-95, Covtype-98, Localization-10 and Poker-07
data sets.

Also, we can see that in most cases, ES-Def outperforms
ES-BestModel. However, for the MiniBooNe-10 data set,
the ES-BestModel strategy outperforms the other strategies
when hillclimb ratio is less than 15%.

The ES-ReTrainFull strategy clearly outperforms ES-Def
and ES-BestModel on Chess-94, Connect-4-95, Covtype-98,
Localization-10 and Poker-07. An interesting pattern is that
the performance of the ES-ReTrainFull strategy is relatively
stable when the hillclimb set ratio is less than 80%. This
pattern inspired us to develop methods that can be used to
reduce ES-ReTrainFull’s training cost, which we will discuss
in the next section. Another noticeable result is that, for
the Magic-07 data set, the performance of ES-ReTrainFull
reaches a peak when the hillclimb set ratio is 65%.

To sum up, we conclude that, when an appropriate hillclimb
set ratio is used (for example, between 20% and 40%), the
ES-ReTrainFull strategy does improve the original Ensemble
Selection algorithm’s performance in general.

4. SPEEDING UP ENSEMBLE SELECTION
BY BUILDING MODEL LIBRARY ON A
SUBSET OF THE BUILD SET

Building the model library for Ensemble Selection sometimes
can be highly time consuming for certain machine learning
algorithms. In our experiments, for the UCSD-10 data set, a
single run could take 20 hours for building the model library
on a computer with a 2.8ghz CPU. In the previous section,
we have seen that the performance of the ES-ReTrainFull
strategy is relatively stable when the hillclimb set ratio is
less then 80%. However, we know that as the hillclimb set



EnsembleSelectionWithReTrainFull(A,L, F,E, r)
A are the algorithms for building the model library
L is the model library
F is the training set
E is the ensemble
r is the hillclimb set ratio

1. T ← SampleWithoutReplacement(F, r) // T is the build set
2. H ← F − T // H is the hillclimb set
3. E ← empty ensemble
4. L← BuildLibrary(A, T ) // build model library on the build set T
5. Assign weight to each base model, such as forward stepwise selection guided

by performance on the hillclimb set H
6. E ← the subset of base models with weight greater than zero
7. F ← T

⋃
H // F is the “full” training set

8. for each method M in E {
if (M ′s weight > 0) {

Rebuild M on F
} else { M ← null // remove M from L, release the memory }
}

Return E ← the subset of base models with greater than zero weight

Figure 1: Pseudocode of the Ensemble Selection algorithm with the ReTrainFull strategy

ratio increases, the actual size of the build set (training in-
stances that are used for building the model library) gets
smaller and smaller. Thus, the pattern probably implies
that ES-ReTrainFull’s performance is not strongly affected
by how much data is used for the build set; or at least, it is
not as critical as the effects of an increase in the hillclimb ra-
tio were on the original Ensemble Selection algorithm. If this
is true, then we could speed up the ES-ReTrainFull strategy
by building the base model library on a subset of the “full”
build set. In this way, the training time of each base learner
for the model library building stage can be dramatically re-
duced, especially for learners with training complexity that
is worse than linear in terms of the runtime cost and size of
the training set.

In this section, we attempt to answer this question: If its
model library is built on a subset, for example, 40% of the
build set, would the ES-ReTrainFull strategy still outper-
form or be competitive to the original Ensemble Selection
algorithm? To answer this question, we decided to com-
pare three different setups for the ES-ReTrainFull strategy.
The three setups are: ReTrainFull-100, which is the ES-
ReTrainFull strategy used for the experiments in the last
section; ReTrainFull-40 and ReTrainFull-60, where only a
random 40% and 60% of the build set is used for building
the model library, respectively.

Figure 3 shows the test set learning curves of the three differ-
ent setups for the ES-ReTrainFull strategy, and the original
Ensemble Selection algorithm (ES-Def) based on 760 indi-
vidual experiments (4 algorithms, 10 data sets, 19 different
hillclimb set ratios per data set). For each experiment, the
algorithms are trained on 66% of the data set and evaluated
on the other 34%. We repeated each experiment five times
and the mean values were used for generating the figures.
We can see that when the hillclimb set ratio is greater than
50%, ReTrainFull-based strategies clearly outperform ES-
Def, except on the MiniBooNe-10 data set, where the per-

formance curves of all algorithms are not very stable. When
the hillclimb set ratio is less than 50%, the results are mixed.
For the ReTrainFull-based strategies, the general pattern is
that the more training data a strategy uses, the better per-
formance it gives. However, on the Chess-94, Localization-
10 and Poker-07 data sets, all ReTrainFull-based strategies
gave similar performance. Also, on these three data sets,
ReTrainFull-based strategies, including the ReTrainFull-40
strategy, clearly outperform ES-Def when the hillclimb set
ratio is between 20% and 40%. When the hillclimb set ratio
is between 5% and 20%, the performance of all four strate-
gies is very close.

Figure 4 shows the runtime curves of the four strategies on
the Adult-96 and the Chess-94 data sets. We use these two
figures here as an illustration because they are typical; the
patterns are similar for the other eight data sets.

For ES-Def, we can see that as the hillclimb set ratio in-
creases, the training time of ES-Def decreases. This is be-
cause the actual size of the build set gets smaller and smaller.
Previous results have shown that the performance of ES-Def
is strongly affected by the hillclimb ratio. For ReTrainFull-
based strategies, we can see that in general ReTrainFull-40
is faster than ReTrainFull-60, and ReTrainFull-60 is faster
than ReTrainFull-100. Also, the ReTrainFull-100 strategy
always has a greater training cost than the ES-Def strat-
egy, because some base models are retrained for the Re-
TrainFull strategy. However, an interesting pattern shows
that the ReTrainFull-40 and the ReTrainFull-60 strategies
are faster than ES-Def only when the hillclimb ratio is less
than a certain value. For the model library and the ten
data sets we have examined, the ReTrainFull-40 strategy is
faster than ES-Def when the hillclimb ratio is less than 40%.
Next, we attempt to analyse the training cost of ES-Def
and ReTrainFull-based strategies, and to see in which situa-
tions, ReTrainFull-based strategies, such as ReTrainFull-40
are faster than ES-Def.



(a) Adult-96 (b) Chess-94

(c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10

(g) Magic-07 (h) MiniBooNe-10

(i) Poker-07 (j) UCSD-10

Figure 2: Learning curves of ES-Def, ES-BestModel
and ES-ReTrainFull. X-axis is the hillclimb set ra-
tio; y-axis is the AUC value

(a) Adult-96 (b) Chess-94

(c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10

(g) Magic-07 (h) MiniBooNe-10

(i) Poker-07 (j) UCSD-10

Figure 3: Learning curves of ES-Def and the three
different setups of the ES-ReTrainFull strategy. X-
axis is the hillclimb set ratio; y-axis is the AUC value



(a) Adult-96

(b) Chess-94

Figure 4: Two typical runtime curves based on 19
different hillclimb set ratio setups

The main training cost of the Ensemble Selection algorithm
(including ES-Def and ReTrainFull-based strategies) con-
sists of two parts:

CostES = CostBuildModelLibrary + CostHillclimbing. (1)

Compared with CostBuildModelLibrary, CostHillclimbing is very
small, so small that we can safely ignore it for our calcula-
tion. Then we have:

CostES ≈ CostBuildModelLibrary. (2)

Assume the training complexity function of CostBuildModelLibrary

(cost for building the model library) is f(n), where n is the
number of the build set instances, n > 0. Then, the training
cost for ES-Def can be expressed as: CostES−Def ≈ f(n);
and the training cost for a ReTrainFull-based strategy can
be expressed as: CostReTrainFull ≈ f(nk) + f ′(n), where
0 < k < 1, is the percentage of the build set that is used
for training the model library, and f ′(n) is the cost for base
model retraining. Also, for simplicity, we assume f ′(n) <=
f(n).

If we hope ReTrainFull-based strategies, for instance, the
ReTrainFull-40 strategy, is faster than ES-Def in terms of
training complexity on the same data set, then, we need to
find out the situations that satisfy f(nk) + f ′(n) < f(n).

What those situations are depends on the function form of
f(n).

Assume we have a model library with m base models of
the same type. When f(n) is linear, then the training cost
for ES-Def is mn; the training cost for a ReTrainFull-based
strategy is mkn+zmn, where again k is the percentage of the
build set that is used for training, and z is the percentage
of models in the model library that are also in the final
ensemble. Therefore, to compare the training cost of ES-
Def and ReTrainFull-based strategies, we actually compare
mn and mkn + zmn. We can set m = 1, then, we need to
compare only n and kn+ zn, from which we can see that in
the linear case f(nk) + f ′(n) < f(n) when k + z < 1.

What if f(n) is superlinear? For example, the m base mod-
els are all random trees and we know that the training
complexity of a random tree is O(nlogn). Thus, in this
case, the training cost for ES-Def is mnlogn; the train-
ing cost for a ReTrainFull-based strategy is mknlog(kn) +
zmnlogn. Therefore, to compare the training cost of ES-
Def and ReTrainFull-based strategies, we actually compare
mnlogn and mknlog(kn)+zmnlogn. We can again set m =
1. Then, we need to compare only nlogn and knlog(kn) +
znlogn. We skip the derivation here, but we can easily find
out that knlog(kn)+znlogn = (k+z)nlogn+nklogk. Since
k is a percentage less than 1, we have nklogk < 0. Then
we have (k + z)nlogn + nklogk < nlogn, when k + z ≤ 1.
Figure 5 (a) shows a simulation for setting k and z to dif-
ferent values. In the simulation f(n) and f ′(n) are assumed
to be O(nlogn). We can see that there is one case in which
the training cost for ReTrainFull is clearly lower than that
for ES-Def: k = 0.4 and z = 0.4, which satisfies k + z < 1.
Two cases, where k = 0.4, z = 0.6 and k = 0.6, z = 0.4, are
slightly lower than ES-Def, which satisfies k + z = 1.

Ensemble Selection is not restricted by the type of base mod-
els used for the model library. We found that the empirical
training cost f(n) of the model library used in our experi-
ments, is between O(n1.2) and O(n1.4). However, the cost
could be much higher when the model library is large, say
thousands of models of diverse types. Figure 5 (b) shows a
simulation for the case that f ′(n) < f(n). In this simula-
tion, f(n) is set to n1.5 and f ′(n) is set to n1.3. The figure
shows that when k is less than 60%, the training cost for
ReTrainFull is much lower than for ES-Def.

Based on the above empirical and theoretical analysis, we
conclude that building the model library on a subset of the
build set (we suggest 40%) and then retraining the base
model that has a nonzero weight on the full build set, is a
procedure that not only reduces the training cost of the origi-
nal Ensemble Selection algorithm, but also keeps (sometimes
improves) Ensemble Selection’s predictive performance. The
more that training the model library costs in terms of the
function form of its training complexity, the greater the per-
formance gain the new strategy, such as the ReTrainFull-40
strategy, will give.

5. FUTURE WORK AND CONCLUSIONS
There are many other aspects of Ensemble Selection that
could be investigated: for instance, how can we find out the
optimal hillclimb set ratio for a given data set? In future



(a) f(n) and f ′(n) are O(nlogn)

(b) f(n) is O(n1.5), f ′(n) is O(n1.3)

Figure 5: Training complexity simulation for ES-Def
and ReTrainFull-based strategies

research, we will try to tackle this problem by extending con-
cepts and techniques of learning curve approximation. The
original authors of Ensemble Selection pointed out that the
hillclimb set is likely to be overfitted when the base model li-
brary is large, say 2000 models [4]. Therefore, finding meth-
ods that can be used to avoid overfitting is another inter-
esting direction that we will explore. In addition, we will
compare Ensemble Selection to other ensemble algorithms
on large data sets.

Ensemble Selection has many good features: it can be op-
timised to any evaluation metric; its implementation is rel-
atively simple, and Ensemble Selection usually yields good
predictive performance on practical problems. In this paper,
we presented two methods that can be used to improve En-
semble Selection’s performance. Based on the experimental
results, we conclude that by an appropriate application of
each method, Ensemble Selection’s predictive performance
can be further improved and its ensemble building cost can
be significantly reduced, especially when the training com-
plexity of the model library is worse than linear. In future
work, we will continue our research on Ensemble Selection
and report our findings in successive papers.
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