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Abstract

The ability to handle and analyse massive amounts of data has been progres-

sively improved during the last decade with the growth of computing power

and the opening up of the Internet era. Nowadays, machine learning algorithms

have been widely applied in various fields of engineering sciences and in real

world applications. However, currently, users of machine learning algorithms

do not usually receive feedback on when a given algorithm will have finished

building a model for a particular data set. While in theory such estimation can

be obtained by asymptotic performance analysis, the complexity of machine

learning algorithms means theoretical asymptotic performance analysis can be

a very difficult task. This work has two goals. The first goal is to investigate

how to use sampling-based techniques to predict the running time of a ma-

chine learning algorithm training on a particular data set. The second goal is

to empirically evaluate a set of sampling-based running time prediction meth-

ods. Experimental results show that, with some care in the sampling stage,

application of appropriate transformations on the running time observations

followed by the use of suitable curve fitting algorithms makes it possible to

obtain useful average-case running time predictions and an approximate time

function for a given machine learning algorithm building a model on a partic-

ular data set. There are 41 WEKA (Witten & Frank, 2005) machine learning

algorithms are used for the experiments.
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Chapter 1

Introduction

Machine learning algorithms have been adopted in many real world applica-

tions. However, there is an issue when applying machine learning in practice:

users generally do not know when the algorithm will have finished building a

model on a given training data set. Much time may be wasted waiting for an

algorithm to finish, especially when the training data set is very large. Thus,

the ability to predict a machine learning algorithm’s running time could be

very useful.

Two kinds of approaches can be used to estimate the running time of an

algorithm. The first approach works when the target algorithm is simple. It

uses knowledge about the underlying algorithm to perform a theoretical perfor-

mance analysis, and then uses this information to estimate the running time.

For more complex algorithms, such as machine learning algorithms, such an

approach can be very difficult. In these cases another kind of approach, called

“empirical algorithm analysis”, is more useful. Empirical algorithm analysis

employs sampling-based techniques to construct a function that is an approx-

imation to the true running time function of a given algorithm.

The present work focuses on the latter approach, and has two goals. The

first goal is to implement sampling-based running time estimators that can

predict the running time of a machine learning algorithm building a model on

a given training data set. The second goal is to use experiments to evaluate

the prediction performance of these estimators.
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1.1 Basic definition of estimation problem

Let f and g be two functions of a natural number n . If f and g are asymp-

totically equivalent as n→∞ then

lim
(n→∞)

f(n)

g(n)
= 1.

Assume f(n) is the running time function of an algorithm, where n is the input

size. The goal of this work is to find a method that can automatically construct

an estimation model (asymptotic function) g(n) based on sampling techniques,

and then use this model to predict the running time t where t = f(n).

1.2 Applications of sampling-based prediction of

algorithm running time

The direct application of running time estimators is the domain of running time

prediction for an algorithm based on a given input size. Algorithm users can

run an estimator before the algorithm proceeds to the full task. The estimated

running time value may help users get a general feeling of how much time the

algorithm will require to complete a given task. This is the initial motivation

for this work.

Another application of the estimators proposed in this work is to provide

users with an asymptotic function (in most cases it is a trend function) of the

true running time function. The form of the estimated asymptotic function can

be very useful in the domain of improving data mining utility with projective

sampling, which is a new and emerging research area. The idea of projective

sampling (Last, 2009) is to fit a function to a partial learning curve obtained

from a small subset of potentially available data, and then use it to analytically

estimate the optimal training set size for a machine learning problem. The

authors in (Last, 2009) assume the total cost of a machine learning algorithm

2



induced from n training examples can be calculated by the following expression

TotalCost(n) = n · Ctr + err(n) · |S| · CerrCPU(n) · Ctime, (1.1)

where S is the testing set, Ctr is the cost for acquiring each new training

example, Ctime is one unit of CPU time, Cerr is the cost for each misclassified

example from the testing set, CPU(n) stands for the time required to induce a

classification model from n examples and err(n) is the error rate of this model.

The projective sampling algorithm presented in (Last, 2009) aims at defining a

heuristic sampling strategy P ∗ that minimizes the total cost of a classification

process

P ∗ = argmin
P

TotalCost(P ).

To make (1.1) as accurate as possible, we need to precisely calculate each of its

terms. We here focus only on the term CPU(n). The authors used two simple

methods to obtain an approximation to CPU(n): simple linear regression and

the power law method (both are discussed in Chapter 2).

The authors claim that model (1.1) works very well in terms of approxi-

mating the total cost for a classification problem. However, our experimental

results show that the two estimators for CPU(n) they consider are not so-

phisticated enough when used to approximate the running time function of a

machine learning algorithm in general. The estimators proposed in this thesis

may improve the accuracy of the estimate for CPU(n), and thus the accuracy

of model (1.1).

There are many other application domains for running time prediction. For

instance, the ideas and techniques employed by running time estimators can

be modified and easily adapted for predicting other resources required by an

algorithm, such as the memory requirement of a given input size.

3



1.3 Objectives and thesis overview

A literature review shows that there are not many publications focusing on

the running time prediction problem. Existing research in this area is mainly

based on using simple linear regression or the power rule method as a tool for

interpolation problems. Moreover, even the simplest running time prediction

methods have not been thoroughly evaluated against each other. Although

some advanced regression methods are available, most of them were designed

and investigated in the field of time series analysis or for a very specific prob-

lem.

When this project was started, the initial assumption was that simple linear

regression would work very well. However, it turned out very quickly that while

this is a theoretically simple problem, it is practically rather challenging. Those

challenges are addressed in this thesis, through discussion of the following

questions:

• How should the running time of an algorithm be measured?

• Do sophisticated point estimation techniques improve data quality?

• How should running time data points be sampled?

• How ought interpolation techniques for extrapolation problems be ex-

tended?

• How can one fairly and systematically compare the prediction perfor-

mance of running time estimators in terms of using different evaluation

strategies?

These questions resulted in a detailed investigation of the running time problem

that consisted of three stages: sampling, model construction and evaluation.

The remainder of this thesis is structured as follows. The next chapter is

devoted to giving a detailed introduction to the running time prediction prob-

lem, and focuses on theoretical considerations regarding several curve fitting

4



algorithms that can potentially be employed as an extrapolation tool. The

chapter that follows next (Chapter 3) elaborates on the eleven running time

estimators proposed in this work, and how they are constructed. Chapter 4

discusses the methods for running time measurement, and point estimation

techniques used to improve the quality of observed running time data. Chap-

ter 5 contains an empirical evaluation of the running time estimators in this

thesis on a wide range of running time data sets obtained by monitoring 41

WEKA machine learning algorithms. Chapter 6 contains the conclusion of

this thesis and a summary that briefly describes future work. There are some

more implementation and mathematical details in the appendices, which are

referenced when necessary.

The work presented in this thesis builds on work done for a one-paper

dissertation by the same author (Sun, 2008). It extends it these ways:

• additional curve fitting algorithms are discussed in depth regarding both

theoretical and practical aspects (least absolute deviations and non-

negative least-squares);

• running time estimators are proposed and examined empirically (LsF,

LsR, LsSeq, LadF, LadR, nnlsF, nnlsR and OneTest);

• four additional running time measurement methods are introduced and

compared against each other;

• evaluation by examining the quality of each prediction is introduced as

a new method for evaluating predictive performance of the estimators;

• evaluation results are presented that are based on real world data sets;

• estimation of data mining utility is discussed as an application of running

time prediction.

Description of techniques that can be found in (Sun, 2008) have been reused

in Chapters 2 and 3 of this thesis where appropriate.
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Chapter 2

Background

An algorithm, in terms of computer science, is a step-by-step procedure for

solving a given task with a finite amount of resources, such as time, storage

and computer memory usage. A given task may potentially be completed using

different algorithms with different sets of resource requirements. One goal of

algorithm study is to find methods that can be used to precisely calculate—or

at least approximate—how much of a particular resource is required for a given

algorithm on a particular task. Such study is referred to as algorithm analysis.

In this work, we investigate methods that can be used to predict the running

time of machine learning algorithms, and evaluate these methods empirically

by experiments. We generally focus on asymptotic analysis of an algorithm,

which formally can be thought of as a method of describing limiting behavior

(see definition in Section 1.1).

In the subsequent sections of this chapter, we focus on background infor-

mation regarding both theoretical and practical aspects of algorithm analysis.

2.1 Deductive and inductive approaches

From the perspective of scientific methods, approaches to algorithm analysis

can be categorized as either deductive or inductive approaches. The asymptotic

behavior of an algorithm can be deduced from strong hypotheses or induced

from experiments.

The deductive approach works from the more general to the more specific,

and is sometimes informally referred to as a top-down approach (Trochim,

6



2006). In the context of predicting the running time of an algorithm we assume

that there is an algebraic relation between the size of input and the running

time of a given algorithm. All other factors that may contribute to variations in

running time are treated as random noise. In this way, an observation is defined

as a {n, t} pair, where n is the size of input, and t is the running time; and a

theory is defined as a function that precisely maps n to t for each {n, t} pair

in the observations. A deductive approach begins with formulating a function

g expressing the relation between the size of input n and the running time t

of an algorithm. The function g can be seen as a hypothesis, and is examined

by actual observations. In our context, the input sizes and observed running

time—the {n, t} pairs—are collected to examine the hypothesis, i.e. function

g. This enables one to draw a conclusion on whether the hypothesis (original

theory) is confirmed, or not. The inductive approach works the other way,

moving from specific observations to generalizations. This is informally called a

bottom-up approach. In the context of this work, an inductive approach begins

with collecting observations, the {n, t} pairs, and then detecting patterns, or

regularities, in order to develop a function g that can precisely map each {n, t}

pair in the observations. In this work, we investigate sampling-based running

time estimation methods for machine learning algorithms. This can be seen as

an inductive approach.

2.2 What is sampling-based prediction?

The underlying idea of sampling-based prediction of algorithm runtime can

be seen from Figure 2.1. For instance, we want to have an estimate for the

running time t of algorithm A for a given input data set X, of size n. In the

sampling stage, we observe the running times of A for inputs that are k sub

sets of X. The input size of each sub set is ni. Suppose k = 3; then for each

run-instance the running time and the input size are observed. Now, we have

three observations: Z1 < n1, t1 >, Z2 < n2, t2 > and Z3 < n3, t3 >, where

7



Figure 2.1: A flow chart showing the concept structure of sampling-based
prediction of algorithm running time

the t’s are the running times, and the n’s are the input sizes, subject to the

restriction that n1 < n2 < n3 < n. At this point, we say that we have a

training data set with three sample data points. Then, in the modeling stage,

we choose a mathematical method, usually a regression method, to build a

model for the training data set. Finally, an estimate for the running time of

A on X is given by the mathematical model in the prediction stage.

2.3 Why use machine learning algorithms?

Machine learning research is concerned with the question of how to construct

computer algorithms that automatically improve with experience (Mitchell,

1997). It draws on concepts and results from many fields, including mathe-

matics, statistics, philosophy, biology, control theory and information theory.

Because of the interdisciplinary nature of machine learning, its algorithms usu-

ally are very complex and need to be able to handle a large amount of data.

When doing a machine learning experiment for a particular algorithm and

data set, the researcher may have to wait for hours, or even days, to get the

results. This motivated us to investigate how to predict the running time of an

algorithm, particularly for machine learning algorithms. In this work, WEKA

(Witten & Frank, 2005) is employed as the framework for constructing and

8



programming the sampling-based running time estimators. Also, the predic-

tion performance of the estimators is examined by predicting the running time

for 41 machine learning algorithms written in WEKA. A list of names of those

algorithms can be found in Appendix B.

2.4 Empirical asymptotic analysis

As we have mentioned in Section 2.1, there are two kinds of approaches that can

be used to estimate the running time of an algorithm. One kind of approach

is to use knowledge about the underlying algorithm to perform a theoretical

performance analysis, and then use this information to estimate the running

time. This approach works when the target algorithm is simple. For more

complex algorithms, such as machine learning algorithms, applying this ap-

proach can be a very difficult task. Another kind of approach is referred to as

empirical algorithm analysis, and employs sampling-based techniques to con-

struct a function that is an approximation to the true running time function

of a given algorithm.

In this work, we focus on the latter approach. In the following sections,

basic ideas of empirical algorithm analysis and numerical function approxima-

tion approaches for both interpolation and extrapolation are discussed, with

examples of finding closed form expressions for the running time of machine

learning algorithms, in terms of input parameters of interest—the input size

of a particular algorithm run instance.

2.4.1 Interpolation curve fitting

The underlying patterns of many practical problems can be described mathe-

matically by a function y = f(x). In such a case, we may face two situations.

One is that our knowledge of the problem is limited, so we do not know the

analytical form for the problem. All we can do is obtain values for certain data

points from experiments. Another situation is where we know the analytical

9



form of f(x), but it is too complex to be applied directly. For this reason, we

need to find a proper function P (x) as an approximate function to the original

function f(x). Interpolation can be employed to solve such problems.

Interpolation is a method or procedure of constructing functions within the

range of a discrete set of known data points (Li et al. , 2000). More precisely,

given a sequence of n distinct numbers xk, called nodes, and, for each xk, a

second number yk, we are looking for a function P so that

P (xk) = yk, k = 1, . . . , n.

A pair xk, yk is called a data point and P is called an interpolant for the

data points. There are many forms of interpolation methods, such as linear

interpolation, polynomial interpolation, spline interpolation, interpolation via

Gaussian processes and others (Li et al. , 2000). Here is a simple example:

assuming we have the following data:

1. x1 = 1, y1 = 2,

2. x2 = 2, y2 = 3,

3. x3 = 4, y3 = 6;

If we want to know the value of y given xnew = 3, then this is an interpola-

tion problem, since the data point to be predicted is in the range of the known

data points (1 < xnew < 4).

It is clear that the mechanism of interpolation is not directly applicable

to the running time prediction problem, since we are interested in predicting

a data point beyond the range of the observed data points. However, some

particular interpolation methods can be extended to be applicable to an ex-

trapolation problem, e.g. curve fitting methods.

In the context of this work, the goal is to use data points obtained in

the sampling stage to form a mathematical model that can be used as an

10



estimator for unknown data points. Naturally, if a curve fits the observed

running time data points well, it is a good candidate for a proper running

time estimator. In the following sections, we introduce some curve fitting

methods for interpolation. They all serve the purpose of fitting the observed

running time data points, and have predictive potential. We consider the guess

ratio method, the guess difference method, the power rule method, the Box-

Cox transformation method, the ladder transformation method, simple linear

regression, multiple linear regression, least absolute deviations regression and

the non-negative least-squares methods.

2.4.2 Guess ratio test

The underlying idea of the guess ratio test is to assume the main term of an

algorithm’s running time function can be formulated by g(n) = nc, c > 0,

where n is the input size.

Under this assumption, let t(n) denote the observed running time. In

(McGeoch et al. , 2002), the guess ratio r(n) is defined as t(n)
g(n)

. If the ratio

grows as the input size increases, then g(n) underestimates the running time; if

the ratio converges to 0 as the input size increases, then g(n) is an overestimate.

In the case that the ratio converges to some constant b greater than 0, then g(n)

is a good estimate for the growth rate of t(n). In addition, an estimation model

for predicting the running time of unobserved input sizes can be constructed

based on the best guess function after several guess ratio tests by using b as

an estimated of c. In practice, empirical study can test only a finite number

of input sizes. Therefore, the guess ratio test cannot be guaranteed to find the

exact value of the exponent c with a finite number of input sizes.

The following example uses the guess ratio test to find an appropriate

estimate of the running time bound of a decision tree algorithm. It is claimed

that the cost of constructing a J48 decision tree (WEKA implementation of

the classic C4.5 decision tree) without sub tree raising is O(mnlogn) where m

is the number of the attributes, and n is the number of training examples for
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Figure 2.2: Guess ratio curves for different ratio tests
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the J48 decision tree algorithm. In most cases, the number of attributes m is

less than the training instance size n; thus m can be ignored, and n can be

seen as the input size. In this case, using big-Oh (Goodrich & Tamassia, 2002)

notation, the simplest running bound form of J48 is O(nlogn).

Next, we apply the guess ratio test, and assume the bound function of the

J48 algorithm can be formulated by g(n) = nc, c > 0. Our first experiment

begins with guessing g(n) = n2 because it is safe to say O(nlogn) is O(n2). To

obtain running times, J48 was run on a data set consisting of three nominal

attributes, six numeric attributes and one class attribute. Figure 2.2 (a) shows

that the ratio converges to close to 0 for n = 1000. Hence, by applying the

concept of the guess ratio test, we conclude that g(n) = n2 is an overestimate

of t(n). That is true, because in this case O(t(n)) is O(nlog(n)).

The next experiment is designed to see whether g(n) = n0.5 is a good

estimate, in this case with n ≤ 100000. Figure 2.2 (b) shows that the ratio

grows as the input size increases, therefore g(n) = n0.5 underestimates the

running time. At this stage, the guess ratio test results suggest that c should

be between 0.5 and 2.0.

The next experiment is designed to see whether g(n) = n1.1 is a good

estimate. Figure 2.2 (c) shows the ratio converges to some constant b greater

than 0, therefore the guess ratio test concludes g(n) = n1.1 is a good estimate,

at least better than c = 2.0 or c = 0.5 for the growth rate of t(n). However,

the guess ratio test cannot conclude c = 1.1 is the best estimate, since this

experiment tested only a finite number of input sizes, where input size n ≤

200000. Figure 2.2 (d) shows the guess ratio curve for g(n) = nlog(n) for

n ≤ 200000. The shape of curve is similar to Figure 2.2 (c), which confirms

that c = 1.1 is a proper estimate.

2.4.3 Guess difference test

In the sense of iterating over guess functions, the guess difference test (Mc-

Geoch et al. , 2002) works similarly to the guess ratio test. The difference is
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that, rather than evaluating the guess ratio curves, the idea of the guess dif-

ference test is to evaluate the difference defined as g(n)− t(n). The test begins

with guessing a function having the form g(n) = anb, where a and b are pos-

itive rationals. In theory, if the difference curve increases monotonically with

n then the guess function g(n) is not O(t(n)); if the difference curve monoton-

ically decreases in the range from n1 to nk then monotonically increases after

nk+1, the guess difference test concludes that the guess function g(n) has the

“Down-Up” property (Figure 2.3 gives two examples). Then the test needs to

search for other difference curves that have the “Down-Up” property by ad-

justing the coefficient a until a new “Down-Up” curve is found. When that

happens, the guess function is assumed to overestimate the exponent b of t(n).

In this case, the guess difference test needs to try another exponent, namely b′

where 0 < b′ < b, and applies the same “Down-Up” curve searching procedure

again.

After a certain user-specified number of searches, the lowest exponent b for

which the test finds a “Down-Up” curve corresponds to the least upper bound

of t(n). Note that, if t(n) is a polynomial function of the form a1n
b1 + a2n

b2 +

· · · + amn
bm where ai > 0 and bi > 0, bi ≥ bi+1 then the guess difference test

may find a difference curve having more than one “Down-Up” range. In this

case, the test may fail if the input sizes used in the test for the underlying

algorithm are not large enough. This is a practical problem that can be seen

in Figure 2.3, where the guess difference plot of real experimental data shows

the difference curves have more than one “Down-Up” range.

This kind of behavior can be due to the underlying algorithm exhibiting a

polynomial time function, but can also be due to t(n) = t′(n) +E, where E is

random noise. In theory, it is assumed that t(nk) < t(nk+1) holds true for all

n. In practice, t(nk) ≥ t(nk+1) could be true, in the case where t′(nk) +Enk
≥

t′(nk+1) + Enk+1
. In other words, whether the guess difference test can find

a reasonable least upper bound for t(n) depends on how the random noise

E is dealt with. Whether random noise can be precisely modeled is still an
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open question. Another problem is that the choice of a proper coefficient a for

the guess function is not obvious for machine learning algorithms, because the

coefficient is related to the number of primitive operations. Except by using

special counting methods in the program code, counting primitive operations

is not feasible for most machine learning algorithms.

Figures 2.3 (a) and (b) show results obtained by running WEKA’s SMO

classifier on a data set consisting of three nominal attributes, six numeric

attributes and one class attribute. Figure 2.3 (a) shows there is a minimum

point at the location where n = 90000 in the range n = 1 to 100000. The

“Down-Up” property that appears between n = 60000 and n = 100000 is the

one that the guess difference test searches for. 2.3 (b) shows there is more

than one “Down-Up” range between n = 1 and n = 100. These “Down-Up”

properties should not be counted as being what the guess difference test looks

for. They are generated by random noise. It is possible to reduce this noise by

using a large offset between each observation. But possible offset values can

only be evaluated during experiments.

Guess ratio and guess difference are not stable when the input sizes for

the observations are small. Many machine learning algorithms have polyno-

mial running time bounds. The guess ratio test and guess difference test are

designed to estimate the exponent of the first term in a polynomial function,

and treat other terms as random noise. Therefore, these two tests cannot be

guaranteed to find a suitable function when the input size is not large enough

to smooth over the random noise. Also, since both tests work by iterating over

an unpredictable number of guess functions, the computational cost might be

too high for a real time prediction task.
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2.4.4 Power test (log-log transformation) and simple lin-

ear regression

As in the guess difference test, the power test method (McGeoch et al. , 2002;

Goodrich & Tamassia, 2002) also assumes t(n) can be formulated by g(n) = anb

where a and b are positive rationals. To find the proper a and b, the power test

applies a logarithmic transformation on each {n, t} pair in the observations.

Secondly, it examines the new {n′, t′} pairs, where n′ = logn, t′ = logt, to see

whether they can be fitted by a simple linear regression line. In what follows,

we consider the simple linear regression is based on the least-squares algorithm

(Section 2.4.8).

Simple linear regression is a method that studies the relation between a

response variable y and a single explanatory variable x. It assumes that for

each value of x, the observed values of the response variable y are normally

distributed about a mean that depends on x. The statistical model for simple

linear regression states that the observed response yi when the explanatory

variable takes the value xi is yi = b0 + a1xi + ei, yi = b0 + a1xi is the mean

response when x = xi, and ei are the deviations that are assumed to be

normally distributed with mean 0 and standard deviation s; and ei is also

referred to as the random error.

Using simple linear regression for empirical algorithm analysis, the input

size n to an algorithm can be seen as the explanatory variable; the observed

running time t of an algorithm can be seen as the response variable. The {n, t}

pairs in the observations are fitted by the line ti = b0 + a1ni.

Figure 2.4 shows an example of using simple least-squares-based simple

linear regression to fit SMO’s running time, using the same data as Sections

2.4.2 and 2.4.3. In addition, simple linear regression can be used as an inference

model. For example, the simple linear regression line based on observations

can be used to make an inference about the running time for a given input size

of an algorithm. From Figure 2.4, it can be seen that simple linear regression
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Figure 2.4: Fitting running times of SMO using simple linear regression

gives t = −2.062E11 + 24266685n as the model. To predict the running time

of an unobserved input size, such as 200,000, the predicted running time is

t = −2.062E11 + 24266685× 200000.

Back to the power rule context. If the transformed observations can be

fitted by a linear regression line, such as t′ = b′n′ + a′, then in the power test

we can conclude that the proper candidates for a and b of g(n) are exp(a′),

the intercept, and b′, the slope of the fit line, respectively. That is, t(n) can

be approximated by g(n) = exp(a′)nb
′ .

Figures 2.5 (a) and (b) show two versions of fitted regression lines on the

observations for SMO (support vector machines algorithm implemented in

WEKA). In (a), the x-axis and y-axis are in the original scale; in (b), the

x-axis and y-axis are in the log (log10) transformed scale. The data used

consists of three nominal attributes, six numeric attributes and one class at-

tribute. From Figure 2.5 (b), we can see that the transformed data points can

be fitted well by a regression line. Therefore, for this experiment, the power

test gives g(n) = exp(2.97307)n1.88469 as the estimation model, and O(n1.88469)

as an estimated bound for the time complexity.

There are some other situations. For instance, if the {n′, t′} pairs grow
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in a significant way, but cannot be fitted by a regression line, the power test

deduces that t(n) is super-polynomial. In another case, if the {n′, t′} pairs

converge to a constant, then the power law rule concludes that the growth of

t(n) is much slower than the polynomial function g(n) = anb, so t(n) can be

sub-linear.

In some special cases, when f(x) contains low-order terms, the log-log

transformed data points do not lie on a straight line. McGeoch et al. (2002)

suggested a variation of the power rule, namely that using only the transformed

data points at the j highest X values might result in a better asymptotic fit

than using all k data points.

2.4.5 Box-Cox transformation

The Box-Cox transformation presented in (Box & Cox, 1964) is a computa-

tional method for determining a power transformation for the response vari-

able. The reason for doing such a transformation in the general regression

case is that sometimes the response plot y versus explanatory x is curved, and

therefore there is a nonlinear relationship between x and y. In this case, if the

mean function E(y|x) cannot be summarized by the simple linear regression on

x, then a suitable monotonic transformation T (y) of y may turn the nonlinear

relationship into a linear one. Table 3.1 shows some common transformations

and possible applications.

The Box-Cox method is a numerical procedure for choosing a response

transformation T (y) that makes E(y|x) as close to normally distributed as

possible. In standardized form, it is defined as

T (x) = yλ, yλ =


yλ − 1

λyλ−1
if λ 6= 0

ȳlog(y) if λ = 0

,

where ȳ is the geometric mean of y.

A more detailed discussion of how to apply Box-Cox transformations for
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Transformation Comments
√
y or √y +

√
y + 1 Appropriate when V ar(y | x) ∝ E (y | x).

log(y) Though most commonly used to achieve linearity, this
is a variance stabilizing transformation when V ar(y |
x) ∝ [E (y | x)]2.

1

y
The inverse transformation stabilizes variance when
V ar(y | x) ∝ [E (y | x)]4.

sin−1(
√
y) This is usually called the arcsine square-root transfor-

mation. It stabilizes variance when y is a proportion
between zero and one.

Table 2.1: Cook & Weisberg (1999) gives a list of common transformations
and possible applications

empirical algorithm analysis can be found in Section 3.4

2.4.6 Ladder transformations

Ladder transformations are of the form T (y) = yk or T (x) = xk, which belongs

to the power family of transformations. It provides a set of transformations for

“straightening” a single bend in the relationship between two variables, and is

referred to as a family of “one-bend” transformations (Tukey, 1977; McGeoch

et al. , 2002). These transformations can be used on either x or y. If the

transformations are ordered according to the exponent k, a sequence of power

transformations is given. In (Mosteller & Tukey, 1977; Tukey, 1977), this is

called the transformation ladder. For example:

k = −1,−1

2
, 0,

1

2
, 1, 2,

where the power transformation k = 0 is to be interpreted as the logarithmic

transformation.

In applying the idea of ladder transformations to running time prediction,

the procedure is to try several transformations of n for the {n, t} pairs in

the observations, where n corresponds to the explanatory variable x, and t

corresponds to the response variable y in the simple linear regression model;
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and then to choose that transformation Ti(n) which makes the points most

nearly collinear. We can use ladder transformations only on the input size n,

and not the running time t, because t is the value to be estimated.

To predict the mean running time for an unobserved input size m, firstly,

the input size m is transformed using the transformation Ti(n). Secondly, a

simple linear regression model is built based on the transformed observations,

and then this linear regression model is used to draw inferences about the mean

running time tm of the explanatory variable Ti(m). The application of ladder

transformations for empirical algorithm analysis is discussed, with examples,

in Section 3.5.

2.4.7 Curve fitting for extrapolation

In the context of this work, we assume that we do not know the mathematical

form for a given algorithm’s running time complexity. Our solution is to use

the data obtained from the sampling stage; then we analyse the observations

to get a deeper understanding of the data. In the modeling stage, we build

a model for the observations using interpolation methods, and then extend

the model, and extrapolate from there. Here we are interested in the data

outside the known data, so we are facing an extrapolation problem, which is

the process of constructing new data points outside a discrete set of known data

points. It is similar to the process of interpolation. In fact some interpolation

methods can also be applied as extrapolation methods. However, the result

of using interpolation to solve an extrapolation problem is subject to great

uncertainty. Regression is the most commonly employed method that uses

both interpolation and extrapolation for practical data analysis and inference.

In the following sections, we introduce some regression methods that have been

used as the base model for the running time estimators proposed in this work.

Before we start discussing the least-squares problem, which is fundamen-

tal to many regression algorithms, we first give a more precise definition for

polynomial curve fitting, because the least-squares problem can be seen as a
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variation of polynomial curve fitting.

Given observation data points (xi, f(xi)), i = 1, 2, . . . , N , a curve fitting

function is (Li et al. , 2000):

P (x) =
n∑
k=0

akϕk(x), n� N,

where ϕ0(x), ϕ1(x), · · · , ϕn(x) are the primary functions, that can be any func-

tion, such as power functions, trigonometric functions or exponential functions,

depending on the actual problem. Let ϕk(x) = xk, k = 0, 1, · · · , n. Then we

have the fitting polynomial

Pn(x) = a0 + a1x+ · · ·+ anx
n =

n∑
k=0

akx
k.

Such a polynomial is usually applied in fitting data points that have no obvious

pattern or monotonicity (Li et al. , 2000). In predicting the running time of an

algorithm, we assume the running time increases as the input size increases.

Also, experimental data we obtained for this work confirmed that, for most

machine learning algorithms, the running time observation data has a clear

pattern of monotone increase. Considering that the running time data points

are not noise free and considering this property of monotonicity (for details,

please see Figures E.1 to E.6 in Appendix E), we apply and examine several

different primary functions, as well as combinations of primary functions, to

achieve the goal of finding a proper curve that not only fits the observed data

well, but also satisfies the monotonicity assumption for extrapolation.

2.4.8 Least-squares

Least-squares (Lawson & Hanson, 1974; Birkes & Dodge, 1993; Ellis, 1998;

Li et al. , 2000; Christensen, 2001) is among the most commonly used curve

fitting methods. The “best fit” in the least-squares sense is that instance of the

model for which the sum of squared residuals has its least value. Most of the
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other methods discussed in subsequent sections actually differ from this only by

how the “best fit” is defined, but the underlying mathematical descriptions are

basically the same. Although they are often discussed in statistical contexts as

regression methods, at this stage, we see them as optimization problems since

we now are focusing on curve fitting. So, in this section, we place more weight

on the theoretical aspects of the least-squares problem from an optimization

point of view.

Let ri be the residual at xi defined by ri = f(xi) − Pn(xi), where i =

1, 2, · · · , N , f(xi) is the observed value, and Pn(xi) is the predicted value, or

the approximate value. The least-squares method constructs a curve fitting

function having the following form (Li et al. , 2000)

Φ(a0, a1, · · · , an) =
N∑
i=1

r2
i =

N∑
i=1

(f(xi)−
n∑
k=0

akx
k
i )

2. (2.1)

In the running time prediction context, suppose we need to weight the impor-

tance of each observation (data point) by its value, which corresponds to the

input size of an algorithm run instance. For instance, the larger the input size

value an observation has, the more important it is. In machine learning or

statistics, this weighting is usually implemented as an instance or data point

weighting procedure. We mentioned instance weighting because in (Lawson &

Hanson, 1974), the authors demonstrate that instance weighting can be em-

ployed to smooth the response variable of a simple linear regression model. It

may force the underlying regression algorithm to construct a monotonically

increasing model, which satisfies the monotonicity assumption for the relation

between an algorithm’s running time and its input size. To achieve weighting,

we can simply add weights to the above function (2.1), so it becomes

Φ(a0, a1, · · · , an) =
N∑
i=1

wir
2
i =

N∑
i=1

wi(f(xi)−
n∑
k=0

akx
k
i )

2.

The goal of least-squares curve fitting is to search for a curve so that the square
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of the residual ri for each data point is as small as possible, which is equivalent

to the following unconstrained minimization problem (Li et al. , 2000)

min
ak∈R

Φ(a0, a1, · · · , an) = min
ak∈R

N∑
i=1

wi(f(xi)−
n∑
k=0

akx
k
i )

2.

To find the solution for the problem above, which can be seen as a general

optimization problem, we can define the objective function as (Gill et al. ,

1981; Nocedal & Wright, 1999)

f(a) =
1

2

m∑
j=1

r2
j (a),

where a is the parameter (solution) vector, andm is the number of data points.

If we assemble the rj into a residual vector defined by

r(a) = (r1(a), r2(a), ..., rm(a))T ,

we can rewrite f as

f(a) =
1

2
||r(a)||22.

The derivatives of f(a) can be expressed by using the Jacobian determinant J

of r (Nocedal & Wright, 1999).

∇f(a) = J(a)T r(a), (2.2)

∇2f(a) = J(a)TJ(a) +
m∑
j=1

rj(a)∇2rj(a). (2.3)

We assume the function r(a) is linear, and is of the form r(a) = Ja+ r, where

r = r(0). Therefore, we have (Nocedal & Wright, 1999)

f(a) =
1

2
||Ja+ r||22, (2.4)
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and we also have

∇f(a) = JT (Ja+ r), (2.5)

∇2f(a) = JTJ. (2.6)

Note that the second term of ∇2f(a) defined in (2.3) disappears in (2.6),

because ∇2rj(a) = 0 for all j.

In this special case, by setting ∇f(a∗) = 0, and because we know that

(2.4) is a convex function, we get the well-known normal equations for (2.4)

(Nocedal & Wright, 1999)

JTJa∗ = −JT r. (2.7)

Next, we will show a special case of the least-squares problem and its appli-

cation to the context of running time curve fitting, which is called the linear

least-squares problem. In Section 2.4.11, we will consider another special case

of the least-squares problem: the non-negative least-squares problem.

2.4.9 Linear least-squares

In Section 2.4.4, we have shown how to use the power rule with simple linear

regression to fit running time data, but without a description of the underlying

mathematical concepts. Actually, simple linear regression is a “simple” case

of multiple linear regression since it has only one explanatory variable. The

simple linear regression we used for Section 2.4.4 is based on the least-squares

algorithm. Here, we will show an example of the use of the linear least-squares

method to fit the running time data of the NaiveBayes classifier (a Naive Bayes

implementation in WEKA).

Table 2.2 shows an example of running time observations. The left-hand

column contains the input size values, and the right-hand side contains the

running time values. Each row in the table can be seen as a running time

data point. Therefore, we have seven data points in total. Using these data

we would like to obtain an equation that expresses the input size as an ap-
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input size n running time t (ms)
160 (10× 24) 1.0
320 (10× 25) 1.0
640 (10× 26) 4.0
1280 (10× 27) 8.0
2560 (10× 28) 21.0
5120 (10× 29) 39.0
10240 (10× 210) 102.0

Table 2.2: Running time data of WEKA’s NaiveBayes classifier building mod-
els on different sizes of input of an artificial data set
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Figure 2.6: Plot of the running time data in Table 2.2
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proximate function of the running time measurement. For notation, let yi be

the running time measurement of the ith data point, and xi be the input size

of the ith data point. The data points are plotted in Figure 2.6. We use the

following linear model

Y = a0 + a1X1 + a2X2 + · · ·+ apXp + e, (2.8)

where e is the random error with a mean of 0. We are interested in constructing

an approximate equation for the data. For this example, we set the value of

p to be 2, where X1 = n, and X2 = n1.1. In Chapter 3, we shall show that

theoretically p can be any integer greater than 0. Here we can re-write (2.8)

as

Y = a0 + a1n+ a2n
1.1 + e.

In terms of the observed data the model is

yi = a0 + a1ni1 + a2n
1.1
i2 , (2.9)

for i = 1, 2, ...7. The least-squares estimates of a0, a1 and a2 are defined as

the â0, â1 and â2 that give the least sum of squares of the residuals
∑
r2
i ,

where ri = yi − (â0 + â1ni1 + â2ni2). We can see that this dovetails with the

optimization problem expressed by (2.4). In matrix notation, model (2.9) can

be expressed as

y = Xa+ e. (2.10)

The normal equations for (2.10) are (Birkes & Dodge, 1993)

(XTX)â = XTy,

and the algebraic solution of the normal equations can be written as

â = (XTX)−1XTy. (2.11)
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Figure 2.7: Plot of the running time data in Table 2.2 fitted by two models

For the data in Table 2.2, Formula (2.11) yields the following estimates


â0

â1

â2

 =


1.41

−0.0164

0.0104

 .

Therefore the estimated regression equation is Ŷall = 1.41−0.0164X1+0.0104X2.

If we use the first six data points in Table 2.2 and not the last one (n = 10240),

the estimated regression equation is Ŷ6 = −1.37 + 0.115X1 − 0.00151X2.

Figure 2.7 shows the fitted data. The solid curve Ŷall is built on all seven

data points, the dashed curve Ŷ6 shows the least-squares linear regression

model built upon the first six data points. We can see that the shapes and the

model parameters are quite different. This is due to the nature of curve fitting

methods, the goal of which is to find a close fit to the observed data, and the

focus is not on the extrapolative capability regarding unknown data.
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2.4.10 Least absolute deviations

In the method of least-squares, the parameters for the linear regression model

are chosen so that the sum of the squares of the residuals,
∑
r2
i , is as small

as possible. In the method of least absolute deviations (LAD), the parameters

are chosen so that the sum of the absolute values of the residuals,
∑
|ri|, is as

small as possible. That is, LAD estimates the model parameters that minimize∑
|yi − Xa|. The concept of LAD is similar to the concept of least-squares

estimation. However, in the actual calculation of the parameter estimates, the

LAD method is more complicated since there are no formulas for the LAD

estimates (Birkes & Dodge, 1993).

Birkes & Dodge (1993) present a numerical method. The procedure is

that, for any given data point (xi, yi), we find the best line among all the lines

passing through it on (x0, y0). That is, for each data point (xi, yi) calculate

the slope yi−y0
xi−x0

of the line passing through the two points (x0, y0) and (xi, yi).

In the case that xi = x0, the slope is not defined so that point is ignored. Then

index the data points so that (Birkes & Dodge, 1993)

(y1 − y0)

(x1 − x0)
≤ (y2 − y0)

(x2 − x0)
≤ · · · ≤ (yn − y0)

(xn − x0)
.

Let T =
∑
|xi−x0|. The least absolute deviation problem is equivalent to the

problem of finding the index k that satisfies the following conditions (Birkes

& Dodge, 1993)

|x1−x0|+ · · ·+ |xk−1−x0| <
1

2
T, |x1−x0|+ · · ·+ |kk−1−x0|+ |xk−x0| >

1

2
T.

The best line passing through (x0, y0) is the line Y = b+ aX, for which

a =
yk − y0

xk − x0

, b = y0 − ax0.
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Algorithm 1 An easy to implement algorithm for computing the LAD regres-
sion line of a given data set

LAD-Lines = [] // a collection

For each data point d in all data points

line = build_line(d, d′) // d′ is another data point other than d
LAD-Lines.add(line)

End For

LAD-Line = get_line_with_min_sum of absolute_deviations(LAD-Lines)

Based on the above numerical procedure, Birkes & Dodge (1993) suggested a

simple implementation of the LAD algorithm, which has the advantage of being

conceptually simpler. Although the simple algorithm has the disadvantage of

requiring a greater computation cost than the numerical method, it is still

feasible for the running time prediction task considered here. The simple

algorithm is based on the observation that an LAD regression line should pass

through at least two data points. So an LAD regression line can be found

among the lines defined by all possible pairs of data points. Therefore we

can simply compute the sum of absolute deviations for each of these lines and

choose the one with the smallest sum.

Algorithm 1 shows the simple algorithm’s pseudo-code for calculating the

LAD regression line. Figure 2.8 (a) shows the curve obtained by applying LAD

on the data in Table 2.2, compared with the least-squares fit. Figure 2.8 (b)

shows the least-squares and LAD built models on the first 6 data points in

Table 2.2. We can see that the two fitted curves are quite close to each other

on this data set.

In Section 3.9 and Section 3.10, we will show how to extend the LAD curve

fitting method so that it has the capacity to predict the running time of an

algorithm.
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(a) Models built on all 7 data points
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Figure 2.8: Plot of the running time data in Table 2.2 fitted by the least-squares
and LAD

2.4.11 Non-negative least-squares

In some situations the least-squares method (or LAD) must be reformulated

by the introduction of certain inequality constraints, which may constitute

additional information about a problem. For instance, given the running time

data in Table 2.3, we apply the least-squares method to fit the data by using

the following linear model

Y = a0 + a1X1 + a2X2 + a3X3 + a4X4 + e,

where X1 = n, X2 = log(n), X3 = n1.1 and X4 = n3. Then, we get the fitted

least-squares curve Y = 35.45 + 0.0018X1 − 9.9824X2 − 0.0005X3 + 0.0X4.

Figure 2.9 shows the curve. We can see that the least-squares model in this

case is not reasonable because we want the predictions to be non-negative.

Therefore, we need to restrict the method to return non-negative predictions.

The idea is that if we use a linear polynomial for the regression model, with

non-negative coefficients, the model should be monotonic or convex, ideally

giving increasing predictions while the input size n increases, which satisfies

our assumption that the running time of an algorithm increases when the

input size increases. Such a special case of linear least-squares with linear

inequality constraints (LSI) is usually called the non-negative least-squares

(NNLS) problem. The LSI problem is an optimization problem, that is defined
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Input size n Running time t (seconds)
20000 4.61
30000 7.47
40000 10.19
50000 13.37
60000 16.00
70000 18.79
80000 22.22
90000 24.67
100000 27.93

Table 2.3: Running time data
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Figure 2.9: Plot of the running time data in Table 2.3 fitted by least-squares

as (Lawson & Hanson, 1974)

min||Xa− f || subject to Ga ≥ h.

The NNLS problem is a restricted form of the LSI problem, and can be

written as

min||Xa− f || subject to a ≥ 0.

LSI problems can be solved using standard numerical methods, such as

line search and trust region methods, in particular the very popular BFGS
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algorithm, named for its discoverers Broyden, Fletvher, Goldfard, and Shanno

(Gill et al. , 1981; Nocedal & Wright, 1999). However, when investigating the

BFGS method, our experimental results showed that it is not suitable for the

sampling-based running time prediction problem with small sample size. In

particular, when the number of explanatory (independent) variables is greater

than the number of data points, the BFGS method may fail to find a solution

(Nocedal & Wright, 1999). Therefore, for this work, we employed an algorithm

found in the literature on non-standard constrained optimization. As discussed

in (Lawson & Hanson, 1974), the conditions characterizing a solution for LSI

are subject of the Kuhn-Tucker theorem:

An n-vector â is a solution for LSI if and only if there exists an m-vector

ŷ and a partitioning of the integers 1 through m into subsets ε and ξ such that

GT ŷ = XT (Xâ− f),

r̂i∈ε = 0, r̂i∈ξ > 0,

ŷi∈ε ≥ 0, ŷi∈ξ = 0,

where r̂ = Gâ− h.

Further discussion of this theorem, including its proof, can be found in

(Fiacco & McCormick, 1968).

Based on this theorem, Lawson & Hanson (1974) gave a finite convergence

algorithm to solve the problem NNLS. Pseudo-code for this algorithm is listed

in Algorithm 2. On termination the solution vector a satisfies

aj > 0, j ∈ P ;

aj = 0, j ∈ Z,
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Figure 2.10: Plot of the running time data in Table 2.3 fitted by two models

Algorithm 2 NNLS(X,m, n, f) solving the non-negative least-squares prob-
lem, adapted from (Lawson & Hanson, 1974)

Step Description
1 Set P := NULL, Z := 1, 2, ..., n, and x := 0.
2 Compute the n-vector w := XT (f −Xa).
3 If the set Z is empty or if wj ≤ 0 for all j ∈ Z, go to Step 12.
4 Find an index t ∈ Z such that wt = max{wj : j ∈ Z}.
5 Move the index t from set Z to set P .
6 Let XP denote the m × n matrix defined by

Column j of XP :=

{
column j of X if j ∈ P
0 if j ∈ Z

.

Compute the n-vector z as a solution of the least-squares problem
XP z ∼= f . Note that only the components zj, j ∈ P , are determined
by this problem. Define zj := 0 for j ∈ Z.

7 If zj > 0 for all j ∈ P, set a := z and go to Step 2.
8 Find an index q ∈ P such that

xq/(xq − zq) = min {xj/(xj − zj) : zj ≤ 0, j ∈ P} .
9 Set α := aq/(aq − zq).
10 Set a := a+ α(z − a).
11 Move from set P to set Z all indices j ∈ P for which yj = 0.

Go to Step 6.
12 The computation is completed and output a.

35



and is a solution vector for the least-squares problem

XPa ∼= f.

The proof of the convergence of this NNLS algorithm is discussed in Appendix

A.

Next, we apply the NNLS algorithm to fit the data in Table 2.3. Figure

2.10 shows the fitted NNLS curve Y = 0.000018X−0.0X2−0.00008X3+0.0X4,

where X1 = n, X2 = log(n), X3 = n1.1 and X4 = n3. We can see that the

NNLS curve fits the data very well, and is much more reasonable than the

unconstrained least-squares fit based on the same linear regression model.

2.5 Conclusions

We have considered the case where f(n) is the running time function of an

algorithm which we want to estimate, where n is the input size. The goal of

this work is to find a method that can automatically construct an estimation

model g(n) based on sampling techniques, and then use this model to predict

the running time t where t = f(n). In this chapter, we discussed several

curve fitting methods. These methods are fundamental to the running time

estimators proposed in this work. Some of them can be applied directly to

an extrapolation problem, some of them need to be adapted. The goal is to

find methods that can construct a model that not only maps the observed

data well, but also has the ability to predict unknown data points. In the

next chapter, we will describe how to use these curve fitting methods to make

predictions—by constructing running time estimators.
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Chapter 3

Running time estimators

In the previous chapter, we have discussed curve fitting methods that can

potentially be employed as the basis for designing a running time estimator.

In this chapter, we will show how to use those curve fitting methods in linear

regression models designed for the running time prediction problem. In total

there are 11 running time estimators that are considered.

The prediction performance of each estimator is evaluated on running time

data obtained from monitoring the running time of 41 WEKA classifiers. The

evaluation results are discussed in Chapter 5. Before discussing the estimators,

we will explain why we chose to use linear regression as the basic approach,

what kind of linear models we have used, and the foundational assumptions

made for this work.

In computer science, the Random Access Machine (RAM) (Elgot & Robin-

son, 1964) is an approach in which counting primitive operations gives rise to

a computational model. In the RAM model, we assume an algorithm’s time

complexity can be expressed by a function of input size, of the form

t = Tr(n) + ε,

Tr(n) ≥ 0, n ≥ 0,

where t is the running time of the algorithm, n is the input size, Tr is the trend

or time complexity function, and ε is the error term. This model says that

the running time t can be represented in terms of the input size n according

to the equation g(n) = Tr(n) and by the error term ε (see Section 1.1 for a
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Figure 3.1: Shapes of different running time trends

definition of g(n)). This error term represents random factors that cause the

running time t to deviate from the average level g. Figure 3.1 shows some

useful trends.

Based on a preliminary investigation of experimental data obtained from

the running times of 41 WEKA machine learning algorithms, we assume an

algorithm’s running time complexity is in one of the following categories:

• No trend, which is modeled as Tr(n) = β0; this means there is no growth

or decline.

• Linear trend, which is modeled as Tr(n) = β0 + β1n; this implies that

there is a straight line growth or decline (depending on the value of β1).

• Logarithmic or square root trend, where there are variations of linear

trend, such as Tr(n) = β0 + β1k(n), where k(n) = log(n) or k(n) =

sqrt(n).

• Quadratic trend, which is modeled as Tr(n) = β0 + β1n + β2n
2; this

implies that there is a quadratic change as the input size n grows.
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• Super linear and sub-quadratic trends; these are variations of quadratic

trend, such as TR(n) = β0 + β1j(n) + β2k(n), where k(n) = nlog(n) or

k(n) = nm, 1 < m ≤ 2, and j(n) is a linear trend function.

• Cubic trend, which is modeled as Tr(n) = β0 + β1n + β2n
2 + β3n

3; this

implies that there is a cubic change as the input size n grows. As with the

linear and quadratic trends, there are variations of cubic trend consisting

of linear and quadratic trend functions.

Although there are more complicated trends, in this work, we assume most

WEKA algorithms belong to the trends above, and exhibit growth in running

time as n increases. We propose the following “full” model for expressing the

running time function:

t = Tr(n) + ε = β0 + β1log(n) + β2nlog(n) + β3n
0.1 + β4n

0.2 + · · ·+

β12n
1.0 + β13n

1.1 + · · ·+ β22n
2.0 + β23n

2.1 + · · ·+ β27n
2.5 + ε. (3.1)

We then rewrite the above trend model into the form of a linear regression

model

y = µy|x1,x2,...,xk
+ ε = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε, (3.2)

where µy|x1,x2,...,xk
= β0 + β1x1 + β2x2 + · · ·+ βkxk is the mean of the response

variable y given the explanatory variables x1, x2, . . . , xk, β0, β1, . . . , βk are re-

gression parameters (coefficients) to be estimated, and ε is an error term. The

error term describes the effects on y of all factors other than the explanatory

variables. The number of explanatory variables is k = 27 in the above model.

We can see that k can be any integer greater than 0, because in theory we can

add an unlimited number of trend functions into (3.1).

When we use the linear regression model stated by (3.2), we face a challeng-

ing problem: in the case that we have p data points, if p < 27, then the number

of explanatory variables is greater than the number of data points. This may

cause numerical problems when using the curve fitting algorithms discussed
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in the last chapter, especially the least-squares, least absolute deviations and

the non-negative least-squares algorithms, because standard implementations

of those algorithms can not be guaranteed to find a solution vector when the

number of explanatory variables is greater than the number of data points.

Another problem is that the value of n3 in a cubic trend model can be very

large, and the observed running time value may be too small compared with

the value of n3. This may result in an ill-conditioned matrix that is difficult for

numerical methods. In the case that the underlying system is an ill-conditioned

matrix, there are methods that can be used to solve this problem (Li et al. ,

2000). One is to progressively update the values of the explanatory variables

of the system until its condition number is acceptable. Another method is to

find out the length of significant digits that is required for the solution of the

system of equations and make sure the returned regression coefficients are at

least in that length. However, neither of the methods can be guaranteed to

return reasonable solution vectors for all the running time prediction problems

examined in this work.

Thus, to avoid such problems, we reduce the full trend model to a more

compact one. Here is an example with only three terms from the full model

Y = β0 + β1X1 + β2X2,

X1 = n,X2 = nlog(n).

Subsequent sections will provide detailed descriptions of how the estimators

are constructed, and what kind of reduced trend models are used.

3.1 Data abstraction

All estimators were programmed in Java, using WEKA as a class library. We

here introduce some additional classes that have been created for this work:

• An Observation object is defined as a data structure consisting of an
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T
Observation ID n Run 1 Run 2 Run 3 Run 4 Run 5

t1 t2 t3 t4 t5

Observation 1 100
Observation 2 200
Observation 3 300
Observation 4 400
Observation 5 500
Observation 6 600
Observation 7 700
Observation 8 800
Observation 9 900

Table 3.1: A sample Observations object that contains nine Observation ob-
jects

{n, T} pair, where n is the input size, and T < t1, . . . , tm >, which is a

vector of running times observed from m runs, for input size n.

• An Observations object is defined as a data structure that is a collection

of Observation objects. Table 3.1 shows an example Observations object

(without actual observed values).

• An Estimator takes an Observations object as input to build an estima-

tion model that can predict the running time of a given input size.

• The “training observations” object corresponds to the Observations ob-

ject that is used to build an estimation model.

• The “testing observations” object corresponds to the Observations object

that is used to evaluate the prediction performance of a running time

estimator.

3.2 Predicting the running time of a machine

learning algorithm

A machine learning algorithm learns a target concept from examples. The

examples are also called a “training set”. Assuming the running time of an
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algorithm depends mainly on the size of the input to the algorithm, the running

time of a given machine learning algorithm training on a particular training

set relates mainly to the size of the training set. Although many other factors

may contribute to the running time of an algorithm, these factors are treated

as random noise in what follows. Given a machine learning algorithm M and

a training set S with k instances, a sampling-based running time prediction

method, an “estimator” for short, works as follows:

• Firstly, an Observations object is obtained by observing the running

times of algorithm M training on different subsets of S. For example,

the size of the training set may be 10,000, that is, a machine learning

algorithm is supposed to learn a target concept (build a concept model)

based on 10,000 examples. In this case, the information stored in the

Observations object is similar to Table 3.1, which is obtained by ob-

serving the running time of the machine learning algorithm training on

subsets of the 10,000 examples, for instance, subset1 = 100, subset2 =

200, . . . , subset9 = 900.

• Secondly, an estimator builds an estimation model based on the Obser-

vations object. Then, the estimator can be used to predict the running

time of algorithm M training on the full training set S.

3.3 PSLR—Power rule with simple linear regres-

sion

The estimator PSLR (based on the power test discussed in Section 2.4.4) first

applies a log-log transformation on each Observation in the Observations ob-

ject. Secondly, PSLR builds a simple linear regression model based on the

transformed Observations object, to predict the running time t for a given

input size n. PSLR uses the simple linear regression model to predict response

variable t′ given explanatory variable n′ where n′ = log(n). Finally, PSLR
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gives the predicted running time as t = exp(t′).

3.4 BC—Box-Cox transformations

The estimator BC (based on the Box-Cox method discussed in Section 2.4.5)

works by searching for the best simple linear regression model after applying

different transformations to the explanatory variable n—the input size. The

Box-Cox transformations are controlled by manipulating the exponent λ in the

following equation:

T (x) = yλ, yλ =


yλ − 1

λyλ−1
if λ 6= 0

ȳlog(y) if λ = 0

,

where ȳ is the geometric mean of y, which is set to be 1 here. In this work,

BC applies transformations on n from the range λ = 0 to λ = 2.5, where λ

is incremented by 0.1 in each step. There are a total of 26 transformations

(λ = 0, λ = 0.1, λ = 0.2, . . . , λ = 2.5). Thus, BC builds 26 simple linear

regression models corresponding to the 26 transformations. The “best” simple

linear regression model over these transformations is defined as the one that

results in the lowest squared error. To predict the running time t for a given

input size n, BC uses the “best” simple linear regression model to predict the

response variable t based on the explanatory variable n′ where n′ = T (nλbest).

3.5 LADDER—Ladder transformations with sim-

ple linear regression

Like estimator BC (Box-Cox estimator), estimator LADDER also uses the

“best” simple linear regression model built on transformed explanatory vari-

ables. To predict the running time t for a given input size n, the original

ladder transformation technique is extended to use a set of ladder transforma-
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tions that are designed for predicting an algorithm’s running time. That is,

simple running time trend functions can be ordered by growth rate (this can

be seen as a variation of the full model (3.1)):

T (n) = logn, log2n, n, nlogn, n1.1, n1.2, n1.3, . . . , n1.9, n2.0, n2.1, . . . , n2.5.

As with PLSR and BC, LADDER builds different simple linear regression

models based on the above ladder transformations, and uses the one that

gives the lowest squared error as the estimation model to predict the response

variable t based on the explanatory variable n′, where n′ = Tbest(n).

3.6 LsF—Least-squares regression on the full trend

model

The estimator LsF uses the full running time trend model stated in (3.1).

As a consequence the associated linear regression model (3.2) will have 27

explanatory variables. At the beginning of this chapter, we have discussed

that if the number of explanatory variables is greater than the number of

data points, then the least-squares computation and the resulting coefficient

vector may not be trustworthy. In order to reduce the number of explanatory

variables in the linear model, M5 feature selection (Wang, 2000; Witten &

Frank, 2005), which is the default feature subset selection method for WEKA’s

linear regression algorithm, is employed. The idea of M5 feature selection is

to step through the explanatory variables, removing the one with the smallest

standardised coefficient until no improvement is observed in the estimate of

the error given by the Akaike information criterion (Akaike, 1974; Hall, 1999;

Wang, 2000; Witten & Frank, 2005). Then we will have a reduced feature

(explanatory variable) set. Finally, LsF uses the reduced feature set and applies

the least-squares algorithm on the training data points.
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3.7 LsR—Linear regression on a restricted trend

model

Rather than using an automated feature selection method to reduce the size of

the explanatory variables, the estimator LsR uses a restricted linear regression

model consisting of three terms, a constant term, a term usingX, and a higher-

order term, such as XlogX, X2, or X3. For this work, based on empirical

observations, we choseXlogX as the higher-order term, so the restricted model

is

Y = β0 + β1X1 + β2X2,

X1 = n,X2 = nlogn, (3.3)

where n is the input size of an Observation. The restricted model has the

advantage that the estimator requires less time to build its prediction model

compared with estimators using a feature subset selection method. Also, the

dimensionality of the problem is reduced, so the resulting model is compact

and very readable.

3.8 LsSeq—Linear regression using an adapted

wrapper method for feature subset selection

The construction of estimator LsSeq is similar to that for the estimator LsF,

except LsSeq uses a version of the wrapper method (Kohavi & Sommerfield,

1995; Kohavi & John, 1996) for feature subset selection. Figure (3.2) illustrates

the basic structure of a wrapper method. The idea is simple: the induction

algorithm is considered as a black box, and the feature selection algorithm

conducts a search for a good subset using the induction algorithm itself as

part of the function evaluating feature subsets. In a wrapper method, the

training data are usually partitioned into internal training and testing sets.

The feature subset with the “best” evaluation score on the test data is chosen
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Figure 3.2: The wrapper approach for feature subset selection

Algorithm 3 A version of the wrapper approach to feature subset selection,
used by estimator LsSeq

For all numbers 0 < M < N of samples (training data points)

For all feature subsets

Build model from first M of N samples using current attribute subset
Evaluate error of model on remaining N −M samples
Add observed error to overall error of this feature subset

End For

End For

Build final model using feature subset with lowest overall error
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as the final feature set, which is then used to apply the induction algorithm.

Inspired by the wrapper method, we propose the feature subset selection

algorithm shown in Algorithm 3 for running time estimation. N is the total

number of data points available for building the model, corresponding to the

number of subsamples of different size used to estimate running time. This

procedure automatically identifies the most relevant terms for the regression

model based on evaluations in the training stage. It measures the error of the

extrapolation for each subset considered, based on using each subsequent train-

ing data as training observations and evaluating on the remaining data. Here,

we use the absolute difference between the observed value and the predicted

value as the evaluation basis.

In preliminary research for this work, we found this method works better

than standard attribute selection or regularization because it measures the ef-

fect on extrapolation directly. Also, it considers the performance for each train-

ing sub-sequence and provides additional useful information: if a set of fea-

tures is appropriate for extrapolating from a particular training sub-sequence

it should also be suitable for extrapolation from all other sub-sequences. In

this work, we use up to N−1 data points for training, and the Nth data point

for testing. The feature subset that results in the smallest absolute difference

is used as the final feature set.

3.9 LadF—LAD regression on the full trend model

The estimator LadF works in exactly the same way as estimator LsF, except

that LadF uses the least absolute deviations algorithm (Section 2.4.10) as the

underlying curving fitting algorithm for the regression model.
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3.10 LadR—LAD regression on a restricted trend

model

The estimator LadR works in exactly the same way as estimator LsR, except

that LadR uses the least absolute deviations algorithm (Section 2.4.10) as the

underlying curving fitting algorithm for the regression model.

3.11 nnlsF—NNLS on the full trend model

The estimator nnlsF works in exactly the same way as estimator LsF, except

that nnlsF uses the non-negative least-squares algorithm (Section 2.4.11) as

the underlying curving fitting algorithm for the regression model.

3.12 nnlsR—NNLS on a restricted trend model

The estimator nnlsR works in exactly the same way as estimator LsR, except

that nnlsR uses the non-negative least-squares algorithm (Section 2.4.11) as

the underlying curving fitting algorithm for the regression model.

3.13 OneTest—A regression meta learner for run-

ning time prediction

In terms of machine learning, a meta learner (Vilalta & Drissi, 2002) studies

how to choose the right bias (base learner) dynamically, as opposed to indi-

vidual base learners where the bias is fixed a priori, or user parameterized.

One advantage of a meta learner is that it overcomes the problem that a base

learner may perform very well on one problem, but very badly on the next.

In this work, we propose a cross-validation selection based regression meta

learner for the running time prediction problem. In our context, a cross-

validation selection based regression meta learner is similar to the idea of the
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Algorithm 4 A cross-validation selection based regression meta learner for
running time prediction

For each estimator e in E

Do k times (where k is a constant, we suggest using k = 1)

Divide the N training data points into two data sets: N1 and N2
(where N1 has N − k data points, and N2 has k data points)

Build estimator e with N1
Test estimator e with N2, and record the evaluation score

End Do

End For

Select the estimator that obtains the lowest average evaluation score
(the evaluation score is defined as the absolute difference between the observed
value and the predicted value)

wrapper method. Algorithm 4 shows the pseudo-code of the meta learner.

We call it OneTest, since when choosing the “best” estimator (base learner)

to use, OneTest gives N − 1 data points to each estimator for training, and

only one data point for testing. The reason for using only one data point for

evaluation is that running time prediction is a small sample size problem, and

we usually do not have many training data points. For this work, the meta

learner OneTest was applied in conjunction with the following ten estimators:

PSLR, BC, LADDER, LsF, LsR, LsSeq, LadF, LadR, nnlsF and nnlsR.

3.14 Conclusions

In this chapter, we described how to use the curve fitting methods discussed in

Chapter 2 in linear regression models to construct running time estimators. At

the beginning, we explained that why the full trend model stated in Equation

3.1 needs to be reduced to a more compact one. We described with examples

that how to adapt the least-squares-, LAD- and NNLS-based algorithms for

running time prediction. Also, the feature selection methods employed by the
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running time estimators are discussed in detail. We also proposed a regression

meta leaner called “OneTest” that can be applied in conjunction with any

individual estimators. In Chapter 5, we will show the experimental results

using different evaluation methods.
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Chapter 4

Measuring running time

As we have discussed in Chapter 2, sampling-based running time prediction

follows the classic machine learning mechanism, which usually consists of data

pre-processing, model selection, model building and evaluation. In the data

pre-processing stage, we aim to obtain quality data points that can be used

not only by the base estimator to build its mathematical model, but also in the

evaluation stage to test the prediction performance of the estimator. When

measuring a program’s running time, there are two important factors that

affect the data quality: one is the point estimation method that we use to

estimate the data value; the other is the tool used for the measurement. In

this chapter, firstly we focus on the methods used to estimate the running time

data point value, answering questions such as why we use an estimate based

on data points from multiple runs instead of a single run, and why statistics

of interest about the data points provide a more informative picture than a

single observation. Secondly, we describe the programming tools we employed

to measure the running time of an algorithm written in Java. At the end of this

chapter, a brief discussion of the limitations and difficulties of these methods

is given.

4.1 Is a single observation good enough?

The basic idea of measuring an algorithm’s running time is trivial. Figure 4.1

shows the logic. We simply calculate the difference between the start time and

the completion time, which is usually called the elapsed time. For example,
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Procedure MeasureRunningTime

startAt ← getCurrentTime()

use an algorithm to do a task

completeAt ← getCurrentTime()

timeElapsed ← completeAt - startAt

End

Figure 4.1: Pseudo-code for measuring an algorithm’s running time

algorithm A starts task k at 10:00:00AM and finishes its job at 10:01:00AM

the same day. We say the algorithm’s running time for this instance is one

minute or 60 seconds. However, can we conclude that the running time of

algorithm A for doing task k is always one minute? To answer this question,

we can get algorithm A to do the same task again, and see whether the elapsed

time is one minute. Table 4.1 lists five running time measurements of WEKA’s

J48 decision tree algorithm building its model on a data set. The experiment

was carried out on an 3GHz Intel P4 PC running Ubuntu Linux 8.1 with only

the software essential to run the experiment installed. The running time data

of runs 1, 2, 3 and 5 are quite close to each other but run 4 is much longer.

However, none of them are identical. We can see that the running time of an

algorithm taking the same input instance varies from run to run. This fact is

due to many reasons, such as the noise caused by memory management, caches,

compiler optimization operations, and CPU usage by other programs. Based

on empirical experiments like this one, we conclude that a single observation

of the running time is not a proper estimate of the true running time value.

Next, we consider in statistical context, and under which conditions, a

statistic of interest, such as the sample mean, provides a more reliable value

than a single observation.
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Elapsed time in nanoseconds
Run ID (1 nanosecond = 10−9 second)

1 901491
2 901212
3 898418
4 1334217
5 924119

Table 4.1: Five running time measurements for the J48 algorithm building its
model on a data set.

4.2 Why use the sample mean?

A number of measurements are taken of some quantity, for example, a pro-

gram’s running time, in order to obtain an estimate of the quantity µ being

measured. If the n measured values are x1, . . . , xn, a common recommendation

is to estimate µ by their mean

x̄ =
(x1 + · · ·+ xn)

n
.

To answer the question asked in the section title, we first apply two data

analytic methods. We use the least-squares approach and the sum of residuals

approach to examine the mean. Suppose the true running time value being

measured is the value t. The sum of squared differences
∑

(xi − t)2 is the

least-squares estimate of µ. That means the least-squares estimate is the

value minimizing the sum of the squared residuals, the residuals being the

differences between the observations xi and the estimated value. Since we

have the identity (Lehmann & Casella, 1998)

∑
(xi − t)2 =

∑
(xi − x̄)2 + n(x̄− t)2,

we can see that on the right side t is not involved in the first term, and the

second term can be minimized by t = x̄.

Second, we use the sum of residuals method, in which the principle is to ask

for the value t for which the sum of the residuals is zero, so that the positive
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and negative residuals are in balance. The condition on t is

∑
(xi − t) = 0.

Again, it is easy to see that t = x̄.

The two approaches derive the mean as a reasonable descriptive measure of

the center of the observations. However, they can not justify x̄ as an estimate

of the true value µ, since no explicit assumption has been made connecting

the observations xi with µ (Lehmann & Casella, 1998). To establish such a

connection, we need to assume that the observations are the values taken on

by random variables that follow a joint probability distribution, ρ, belonging

to some known class P (Lehmann & Casella, 1998; Moore & McCabe, 1999;

Christensen, 2001; Spiegel & Stephens, 2008). The distributions are indexed

by a parameter, say µ, taking values in a set, Ω, so that

P = {ρµ, µ ∈ Ω}.

Under this probability model, all we need to do is specify a reasonable value

for µ. Here, µ can be viewed as a summary of the information provided by

the data. That is, we estimate µ by a function g(X), where X are the data

points. The function g(X) could be the mean function, or any statistics of

interest obtained from the data. The assumptions above can be regarded as

using the classical inference theory.

In the perspective of Bayesian analysis, µ is a random variable with a known

distribution. In our running time prediction context, there is no problem if we

see µ is itself a random variable since we know that the running time of an

algorithm taking the same input instance varies from run to run. However, the

second part of the assumption of the Bayesian approach is not as suitable in

our context because we do not know the prior distribution of µ. For simplicity,

and the reasons given below, we assume the prior distribution is normal.
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One reason is that the normal distribution is well studied and commonly

used, and has many convenient statistical properties and mathematical results.

In the case of normal distribution, the xs (data points) have a variance of σ2,

and the variance of the mean x̄ is σ2/n, so the expected squared difference

between the mean x̄ and µ is only 1/n of what it is for a single observation

(Lehmann & Casella, 1998). Another reason is that if the xs do not have a

normal, but a Cauchy distribution (Papoulis, 1984; Spiegel, 1992)—also known

as the t distribution with one degree of freedom—which has no mean or vari-

ance, then the distribution of x̄ is the same as that of a single xi (Lehmann

& Casella, 1998). If that is the case for the running time data, then taking

several measurements and averaging them as dictated by assuming a normal

is the same as just taking a single observation.

For these reasons, we decided to assume the prior distribution for µ, is

normal. Note also that, even if the population distribution, in our case the

running time distribution, is not normal, as the sample size increases, the

distribution of x̄ gets closer to a normal distribution. And this holds true no

matter what shape the population distribution has, as long as the population

has a finite standard deviation (Moore & McCabe, 1999).

Let us now consider an example with real data. Figure 4.2 shows normal

probability plots with distribution fit for J48’s running time when the number

of runs is 10, 100, 1000 and 10,000. For each run, J48 builds its model on a data

set with 100 instances, six numeric attributes, three nominal attributes and

one nominal class attribute. The confidence interval is set to be 95%. We can

see that when the number of runs is 10, the data is very close to normal. This

empirically suggests that in the running time prediction context, the sample

mean may be a proper estimate of the true running time. However, when the

number of runs is 100, the data shows a clear departure from the theoretical

normal model. This very interesting result suggests that we can not say the

running time data are truly from a normal distribution. Next we see that in

the 1000 runs and the 10,000 runs cases, the patterns are similar: the data is
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Figure 4.2: Normal probability plot with distribution fit for J48’s running time
when the number of runs is 10, 100, 1000 and 10,000. For each run, J48 builds
its model on a training data set with 100 instances, 6 numeric attributes, 3
nominal attributes and 1 class attribute. The confidence interval (CI) = 95%

Number of runs Mean Anderson-Darling statistic
10 26965463 0.293
100 10799027 10.518
1000 1827616 292.638
10000 988342 3365.080

Table 4.2: Anderson-Darling statistics for the running time data in Figure 4.2

bent up at the right, showing right skewness. This is due to the outliers. If we

remove the outliers, the data is close to normal.

Table 4.2 gives the Anderson-Darling (Anderson & Darling, 1952) test re-

sults associated with the data in Figure 4.2. The Anderson-Darling statistic

measures how well the data follow a normal distribution. The better the dis-

tribution fits the data, the smaller this statistic will be. We can see that as

the number of runs increases, the value of the Anderson-Darling statistic in-

creases as well. This is an interesting phenomenon because it suggests that

the observed running time data are not from a normal distribution: a point

estimation method based on the normal distribution assumption may not be

appropriate. This result is counter-intuitive.

Based on the above theoretical considerations, we conclude that, the mean
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provides a more reliable value than a single observation when the running time

data are from a normal distribution. However, the true shape of the running

time data may have a more advanced distribution. Nevertheless, in this work,

we use the mean as the point estimation method in all experiments described

in Chapter 5.

4.3 Measuring the running time for an algorithm

written in Java

As the goal is to build a running time estimator based on a few sample points

(running time data in this case) to predict the running time of an unobserved

program-execution time, the quality of the data—the measurement accuracy

of the running time for training the model is crucial to the performance of a

running time estimator. For that reason, we examine the prediction perfor-

mance of each running time estimator not only on different algorithms and

input data sets, but also on different measurement methods. Chapter 5 con-

tains a detailed discussion of the experiment results. In this section, we focus

on the running time measurement methods.

The Java programming language provides some built-in application pro-

gramming interfaces (APIs) that can be used to get a value for the getCur-

rentTime function stated in Figure 4.1. In addition to these API methods,

there are some other measurement methods which are based on the Java native

interface (JNI) interacting with the time function of the underlying system. In

the preliminary research stage, we explored five different measurement meth-

ods including the Java built-in APIs, JNI with C, and a third-party benchmark

tool to measure the running time of 41 WEKA machine learning algorithms.

Here is a very brief summary of these five methods:

• Method A—Use Java’s System.nanoTime() to get running time in nanosec-

ond, or System.currentTimeMillis() to get running time in milliseconds;
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• Method B—Use Java’s getCurrentThreadCpuTime() method of theMan-

agementFactory class;

• Method C—Use a benchmark tool (Boyer, 2008) to measure the elapsed

time;

• Method D—Use a benchmark tool (Boyer, 2008) to measure the CPU

time;

• Method E—Use JNI to call C’s clock() function.

4.4 Measurement experiment

Table 4.3 gives an example running time data sheet for WEKA’s J48 decision

tree algorithm building its model on a data set of size 1000. The running time

data were measured using the five methods from above. We can see that the

running time data measured by methods A and B are close, the means are

all about 0.03 second. The running time data measured by methods C and D

are also close, with both means about 0.0009 second. We discuss the values

measured by method E in the next section.

In this experiment, the mean running time calculated based on the data

measured by methods A and B is about 33 ( 0.03
0.0009

) times longer than that

measured by using methods C and D. Does this mean the benchmark tool is

a more accurate running time measurement instrument compared with simply

measuring the elapsed time as implemented by methods A and B? To answer

this question, we run another experiment on a larger data set and the observed

running time data is given in Table 4.4. This time, we can see that the mean

running time values calculated based on data measured by the five methods

are all about four seconds. For this case, it is hard to say which measurement

method is better.

Assume an algorithm completes its task in a very short time (as in the first

case), where the elapsed time is τ , the true running time is supposed to be t,
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Method A Method B Method C
ID t
1 86983355
2 29210490
3 23310956
4 20025397
5 15512609

mean 35008561
(0.035 s)

ID t
1 70000000
2 30000000
3 30000000
4 10000000
5 10000000

mean 30000000
(0.030 s)

ID t
1 1034095
2 855668
3 919490
4 937744
5 883249

mean 926049
(0.00092 s)

Method D Method E
ID t
1 1031250
2 881835
3 899414
4 851562
5 1027343

mean 938280
(0.00093 s)

ID t
1 1000000000
2 1000000000
3 1000000000
4 1000000000
5 1000000000

mean 1000000000
(1 s)

t is in nanoseconds

Table 4.3: Results of using different running time measurement methods to
measure the running time data of WEKA’s J48 decision tree algorithm building
its model on a data set with three nominal attributes, six numeric attributes,
one class attribute and 1000 instances

the noise caused by compiler optimization or all other factors is e. We have

τ = t + e, and define T as a time length. It was observed that if τ < T then

e is much greater than t (e � t), otherwise e � t. We do not know what

exactly T should be, but our experiment suggests T is about 1000 ms. In the

situation τ < T , the running time of the algorithm itself only contributes to

a small part of the total elapsed time. Therefore, we know that the running

time data measured by certain methods, such as A and B, can be much longer

than the actual running time when the measured elapsed time τ is less than

T .

4.5 Time unit and resolution

The finest time unit provided by the Java programming language version 1.6

is one nanosecond. The running time data in Table 4.1 were measured by

using method A. We can see that the running time data are quite different in

the nanosecond resolution. In the last section, we discussed that this is due
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Method A Method B Method C
ID t
1 4847524758
2 4297341591
3 4301882594
4 4177055448
5 4346481635

mean 4394057205
(4.39 s)

ID t
1 4840000000
2 4270000000
3 3870000000
4 3870000000
5 3870000000

mean 4144000000
(4.14 s)

ID t
1 4133831192
2 4100922994
3 4157013278
4 4032186658
5 4217231554

mean 4128237135
(4.12 s)

Method D Method E
ID t
1 3838000000
2 3882000000
3 3836000000
4 3921999999
5 4074000000

mean 3910400000
(3.91 s)

ID t
1 4000000000
2 5000000000
3 5000000000
4 4000000000
5 4000000000

mean 4400000000
(4.40 s)

t is in nanoseconds

Table 4.4: Results of using different running time measurement methods to
measure the running time data of WEKA’s J48 decision tree algorithm building
its model on a data set with three nominal attributes, six numeric attributes,
one class attribute and 30000 instances

to the tool used for monitoring the running time, which is not sophisticated

enough to read the true running time. But if we had the perfect measurement

tool, could we conclude that the running time data must all be the same?

The answer is: “It depends”. If we convert the values of running time data

in Table 4.1 into the values shown in Table 4.5, we can see that they are not

the same at the nanosecond resolution, thus we do not have the perfect tool

for this resolution. However, for the second (time unit) resolution, we had the

perfect tool, because all values are the same. This fact may motivate one to

use the finest resolution possible. However, Boyer (2008) pointed out that the

actual time resolution is not only dependent on the measurement instrument,

but also depends on the underlying operating system and hardware. Table 4.6

lists the resolution levels provided by different operating systems. We can see

that, although the Java programming language supports the nanosecond level

of time resolution, most operating systems can support time resolution only

at a ten-milliseconds level. Therefore, in this work, measurement methods A
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Elapsed time
nanosecond = 10−9 second
microsecond = 10−6 second
millisecond = 10−3 second

Run ID in nanoseconds in microseconds in milliseconds in seconds
1 901491 901 1 0
2 901212 901 1 0
3 898418 898 1 0
4 1334217 1334 1 0
5 924119 924 1 0

Table 4.5: Five running time measurements for the J48 algorithm building its
model on a data set, running time data in four time units

Resolution System
55 ms Windows 95/98
10 ms Windows NT, 2000, XP single processor

15.625 ms Windows NT, 2000, XP dual processor
∼15 ms Windows Vista
10 ms Linux kernel 2.4
1 ms Linux kernel 2.6
1 ms Mac OS X

Table 4.6: Time resolution provided by different operating systems, adapted
from (Boyer, 2008)

and B were employed when measuring the running time data for 41 WEKA

machine learning algorithms. We did not use the benchmark tool (used by

methods C and D) for the experiments described in Chapter 5, because we

observed that the running time cost of the benchmark tool itself is too high to

be used as a practical running time estimator. Method E, which uses the JNI

to call C’s clock() function, gives no better resolution than method B, so we

did not use it, either.

4.6 Conclusions

As we have seen, measuring true running time by running an algorithm for a

certain input size is a difficult problem in two regards. One aspect is, we need

a measuring tool that is able to obtain a relatively accurate running time. The

other is that, we need to use a point estimation method to estimate the true
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running time of an algorithm. Both have a great influence on the prediction

performance of a running time estimator. Therefore, in the evaluation stage,

the running time estimators are compared under the same configurations, and

for each configuration we make sure the training data sets, the tool used to

measure the running time and the point estimation method, are same. In

the running time data generation procedure applied for this work, for each

measurement method (methods A and B), five runs of measurements were

obtained for each algorithm-execution instance. The proposed running time

estimators are compared separately for each measurement method, so that

random errors caused by the measurement tools do not affect the evaluation

results.
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Chapter 5

Experimental results

In the previous chapters, we have discussed how to use interpolating curve

fitting methods for extrapolation problems, and considered in detail the 11

running time estimators proposed in this thesis. This chapter presents exper-

imental results on the prediction performance of those estimators, predicting

the running times of 41 WEKA machine learning algorithms when building

models on an artificial data set. In Section 5.7, we also consider the per-

formance of the 11 estimators when used for predicting the running time of

WEKA’s SMO classifier on nine real world data sets.

5.1 Environment used for the experiments

The running time data were obtained on an Apple computer system with the

following hardware and system specifications:

Hardware

• Processor: Intel Core Duo 1.66 GHz

• Memory: 1 GB

Software

• Operating system: Mac OS X 10.5.3 Leopard

• WEKA: version 3.7

The average CPU usage of other system processes while running an experiment

was less than 3%.
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@relation weka.datagenerators.classifiers.classification.Agrawal
@attribute salary numeric
@attribute commission numeric
@attribute age numeric
@attribute elevel {0,1,2,3,4}
@attribute car {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
@attribute zipcode {0,1,2,3,4,5,6,7,8}
@attribute hvalue numeric
@attribute hyears numeric
@attribute loan numeric
@attribute group {0,1}
@data
110499.735409,0,54,3,15,4,135000,30,354724.18253,1
30372.275651,16722.784451,80,0,5,3,135000,10,481605.899589,0
119159.651677,0,49,2,1,3,135000,22,122025.085242,1
20000,52593.636537,56,0,9,1,135000,30,99629.621457,1
33167.375416,65126.594875,26,1,18,6,135000,3,475809.177725,0
...

Figure 5.1: Excerpt of the artificial data set used for getting the running time
data of 41 WEKA machine learning algorithms, in WEKA’s attribute-relation
file format (ARFF) (Witten & Frank, 2005)

5.2 Running time data sampling

Given a training data set A of size N and a machine learning algorithm M ,

our goal is to predict the running time of M building a model on A based on

data points obtained by using M on a small percentage of A. For instance,

say N = 100, and we want to use only up to 5% of training data set A. One

possible approach is to run algorithm M on five subsets of A, where the sizes

of those five subsets could be 1, 2, . . ., 5. This way we will have five running

time data points.

One question is, how to sample these subsets of A? We have tried two

sampling strategies: random sampling and additive sampling. The idea of

random sampling is simple and works as follows: say we want five subsets of

A with sizes of 1, 2, . . ., 5. For subset 1, we randomly choose one instance

from the training data set A, for subset 2 we randomly choose two instances,

and accordingly for subset 3, subset 4 and subset 5, we randomly choose three,

four, and five instances from A.

64



In contrast, the additive sampling strategy works as follows. Again, we

want five subsets of sizes 1, 2, 3, 4 and 5. We first randomly choose one

instance from A for subset 1. For subset 2, we randomly choose only one

instance from A, and add the instance in subset 1 to subset 2 to get two

instances. Accordingly, for subset 3, we have the instances in subset 2 plus

one randomly selected from A. In the same way, subset 4 consists of subset

3 plus one and subset 5 of subset 4 plus one. When randomly selecting an

instance and adding it to a set, the chosen instance could already be in the

set. When this happens, we choose another instance, and make sure there are

no identical instances in a set. We found that the additive sampling strategy

makes the runtimes for different sizes more directly comparable and hence

makes it easier to fit the curve. Therefore in this work, the additive sampling

strategy was employed when sampling running time data for the 41 WEKA

machine learning algorithms.

As mentioned in Chapter 4, for each input size, five measurements were

acquired for calculating a statistic of interest (data point estimation). We first

apply the 1.5× IQR (interquartile range) criterion for outlier detection to the

data, and use the mean of the measurements with outliers removed as the

data point value. Table 5.1 shows the running times observed from five runs

of a WEKA machine learning algorithm training on a data set. In the first

row, the largest observation (measure1) is a suspected outlier. In IQR outlier

detection, the interquartile range IQR is defined as the distance between the

first and third quartiles: IQR = Q3 − Q1. Using the data in Table 5.1 as

an example, IQR = 22 − 20 = 2, then 1.5 × IQR = 3. Any values below

20 − 3 = 17 or above 22 + 3 = 25 are seen as outliers. It can be seen that

measure1 (4029 ms) and measure4 (69 ms) are two outliers based on the

1.5× IQR criterion, because both are greater than Q3 + 1.5× IQR. Therefore

they are removed from the observations before computing the mean.

In running time observation experiments, we found that the Java Virtual

Machine (JVM) needs some time (usually under 1000 ms) to “warm up” before
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working on an actual task. The “warm up” procedure is due to the real time

optimization applied by the JVM to find an optimized code interpretation

strategy for the underlying program code. The running time cost of this “warm

up” procedure usually contributes to the time cost of the first running time

observation. Therefore, an outlier detection method such as the IQR detection

scheme needs to be applied.

The running time data used for the experiments were obtained by running

the 41 WEKA machine learning algorithms on an artificial data set consisting

of six numeric attributes, three nominal attributes and one class attribute. The

data was generated using one of WEKA’s data set generator tools. Detailed

parameter settings for the generator and the data set can be found in Appendix

C. Figure 5.1 shows the structure of the data set.

5.3 Running time data sets

Two different running time measurement methods (Section 4.3) were used when

acquiring the running time data for the 41 WEKA machine learning algo-

rithms. Consequently, we have two collections of running time data sets. One

was obtained using method A (Section 4.3), another using method B (Section

4.3). We found that the prediction performance of the 11 estimators is simi-

lar for both running time data collection methods. The experimental results

shown in this chapter are based on the first method. Experiments and results

based on the second measurement method can be found in Appendix D.

Table 5.1 shows a sample running time data file. The running time values

were measured using method A (Section 4.3). All 41 WEKA machine learning

algorithms examined in this work were used to generate data files like this one.
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Input size measure1 measure2 measure3 measure4 measure5

10 4029 20 21 69 22

20 27 21 20 31 111

40 30 21 24 35 23

80 33 31 39 51 30

160 85 59 111 68 45

320 129 247 110 132 94

640 302 401 695 352 280

1280 988 954 959 1093 1017

2560 3666 3607 3831 3773 3810

5120 17219 16619 18081 17054 17093

10240 74496 74786 72584 72850 72007

20480 303874 308036 303687 300130 310681

40960 1303578 1309416 1311123 1308362 1317133

81920 5544938 5500496 5340639 5391164 5524745

Table 5.1: A sample running time data file obtained using the SMO algorithm
(WEKA implementation of support vector machine learning). For each input
size, five running time measurements were obtained. Values are in milliseconds.
The algorithm was run on a data set consisting of six numeric attributes, three
nominal attributes and one class attribute
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Figure 5.2: Running time data curve fitting
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Figure 5.3: Running time data curve fitting
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5.4 Curve fitting using least-squares, LAD and

NNLS

In Chapter 2, we have discussed three curve fitting algorithms: least-squares,

LAD and NNLS. Before we start describing the evaluation results for the es-

timators using these curve fitting algorithms, it is illustrative to consider how

these algorithms fit running time data obtained by monitoring the running

times of 41 WEKA machine learning algorithms on an artificial data set (six

numeric attributes, three nominal attributes and one class attribute with two

classes). In this experiment, the following linear regression model was used

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6,

X1 = n,

X2 = log(n),

X3 = nlog(n),

X4 = n1.5,

X5 = n2.0,

X6 = n2.5,

where n is the input size.

Figures 5.2 to 5.3 show some fitted curves obtained using the least-squares,

LAD and NNLS algorithms with the above linear model, which are selected

from the figures in Section E.1 of Appendix E. From the figures in Section

E.1 of Appendix E, we can see that in most cases, the least-squares and the

NNLS curves are close, and fit the data well. In some cases, the least-squares

algorithm fits the data very well, but its curves show clear nonlinear shapes,

such as Figures 5.2 (a), (b), (c), (d), (e), (f), (g), and (h), Figures 5.3 (a),
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(b), (c), (d), (e) and (f). This implies that the least-squares fit is good at

interpolation, but not extrapolation. The NNLS algorithm holds promises as

the fitted curve is monotonic. However, in some cases, such as Figures 5.3 (e),

(f) and (g), it does not fit the data well. The LAD curves do not fit each data

point closely; however, they always satisfy the monotonic assumption.

Section E.2 of Appendix E shows fitted curves for those three algorithms

on running time data obtained using the measurement method B described in

Section 4.3.

In the following sections, we will consider the experimental results on the

prediction performance of the running time estimators based on these curve

fitting methods.

5.5 Evaluation by examining the absolute error

of each prediction

In total, we have the running time data for 41 WEKA classifiers and 11 run-

ning time estimators. To see the prediction performance of each individual

estimator compared with each other, the first evaluation method we employ is

the absolute error (absolute difference)4x ≡ |x0−x|, where x0 is the predicted

value, and x the actual value. In the running time prediction context, we as-

sume we do not know the actual value of the true running time. Therefore, we

use x̄, the mean of the observed values as an alternative.

Assume we have an input data set A of size n, a machine learning algorithm

C, and three estimators, E1, E2, and E3, giving p1, p2 and p3 respectively

as the predictions of the running time of C building its model on A. If E1’s

prediction p1 results in the lowest absolute error among these three estimators,

we say estimator E1 won this experiment instance.

Algorithm 5 shows the pseudo-code of the evaluation algorithm used to

calculate and examine the absolute error of each prediction.

Let us consider a case study designed to compare prediction performance
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Algorithm 5 Pseudo-code for calculating prediction performance based on
absolute error
For Each test observation instance

tm = testObservation.meanOfRunningtime

For Each estimator

estimatedRunningtime = estimator.predict(testObservation)

error[estimator ] = ABS(estimatedRunningtime - tm)

IF estimatedRunningtime <= 0
error[estimator ] = Double.Max

End IF

End For

For Each estimator

IF error[estimator ] == MIN(error)
numOfWins[estimator ] += 1

End IF

End For

End For
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between estimators, based on WEKA’s SMO algorithm. The setup considered

is as follows:

• Machine learning algorithm M : SMO

• Training set S for M : The artificial data set consisting of six numeric

attributes, three nominal attributes and one class attribute.

• Estimators for testing: PSLR, BC, LADDER, LsF, LsR, LsSeq, LadF,

LadR, nnlsF, nnlsR, OneTest

• Evaluation method: Number of wins based on the absolute error

To fairly compare between estimators, the training data points used by each

estimator to construct its own estimation model need to be the same. Then,

given testing data points, the predictions of each estimator are compared based

on the evaluation method. In this case study, the absolute error criterion is

employed. We use the first 11 (up to input size = 10240) running time data

points in Table 5.1 as the training data points, and the remaining three data

points as the testing data points.

Table 5.2 shows the running time predictions of the 11 estimators predicting

on the three testing data points. Values ending with a “•” indicate a win by

the smallest absolute error. We can see that the estimator LADDER (based on

ladder transformations) wins for all three testing instances. However, although

estimator LADDER outperforms others in this particular case study, this does

not mean LADDER will also win when testing on the running time data of a

set of machine learning algorithms.

Tables 5.3 and 5.4 show the results of examining the 11 estimators for all

41 WEKA machine learning algorithms using the same experimental setup as

in the above case study. We can see that estimator LADDER has the highest

number of wins (18), comprising about 20% of all 123 tests (three testing data

points for each of the 41 algorithms). However, although LADDER wins for

this particular setup, that does not mean LADDER will necessarily win when
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Setup
ID

Training data points Testing data points

1 {10, 20, 40, 80, 160}
Size: 5

{320, 640, 1280, 2560, 5120, 10240,
20480, 40960, 81920}

2 {10, 20, 40, 80, 160, 320}
Size: 6

{640, 1280, 2560, 5120, 10240,
20480, 40960, 81920}

3 {10, 20, 40, 80, 160, 320, 640}
Size: 7

{1280, 2560, 5120, 10240, 20480, 40960,
81920}

4 {10, 20, 40, 80, 160, 320, 640,
1280}

Size: 8

{2560, 5120, 10240, 20480, 40960,
81920}

5 {10, 20, 40, 80, 160, 320, 640,
1280, 2560}

Size: 9

{5120, 10240, 20480, 40960,
81920}

6 {10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120}

Size: 10

{10240, 20480, 40960, 81920}

7 {10, 20, 40, 80, 160, 320, 640,
1280, 2560, 5120, 10240}

Size: 11

{20480, 40960, 81920}

8 {10, 20, 40, 80, 160, 320,
640, 1280, 2560, 5120, 10240,
20480}

Size: 12

{40960, 81920}

9 {10, 20, 40, 80, 160, 320,
640, 1280, 2560, 5120, 10240,
20480, 40960}

Size: 13

{81920}

Table 5.5: Different training/testing setups for evaluating the prediction per-
formance of the 11 estimators over 41 WEKA machine learning algorithms,
based on evaluating the absolute error
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Rank Estimator Percentage of wins

1 LadR 24%

2 OneTest 16%

3 LadF 10%

4 LADDER 9%

5 nnlsR 8%

5 LsF 8%

5 LsR 8%

5 BC 8%

9 LsSeq 5%

10 PSLR 3%

11 nnlsF 2%

Table 5.6: A ranked list of the 11 estimators. Ranking positions are based
on the prediction performance of the 11 estimators over 41 WEKA machine
learning algorithms under 9 different training/testing setups, using absolute
error as the evaluation criterion

the experimental setup is changed. For example, the number of training data

points or the number of testing data points can be changed. Therefore, we

will next show the prediction performance of the 11 estimators under several

training and testing setups.

Table 5.5 shows the details of the training and testing data setups for this

experiment. The numbers in the columns “Training data points” and “Testing

data points” indicate the input size values of a simple running time experiment.

The experiment counts the percentage of wins over all tests (based on the

number of wins per setup) each estimator received for each of the nine setups.

Table D.1 in Appendix D shows the results.

Figure 5.4 shows the prediction performance curves of the 11 estimators as

the size of the training data increases from 5 to 13. The values for “percentage

of wins” are calculated by counting the number of wins based on the absolute

error evaluation, and then dividing by the number of tests performed for a

particular size of training data. We can see that estimator LadR outperforms

the other estimators when the size of the training data grows from five to
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eight, which means LadR’s performance is good when the size of the training

data points is small. Excluding estimator LadR, as the size of the training data

points increases, we can see that the estimators OneTest and LadF outperform

the other estimators. Another interesting point is that, when there are enough

training data points—for example, as the size of the training data grows from

10 to 12—the estimator LADDER has the highest percentage of wins.

Table 5.6 shows a ranked list of the 11 estimators for this experiment,

sorted by the percentage of wins. It can be seen that the estimators LadR

(least absolute deviations based on a restricted linear regression model) and

OneTest (regression meta learner) outperform the other estimators.

5.6 Evaluation by examining the quality of each

prediction

In Table 5.6, we have a list of running time estimators ranked by percentage

of wins based on the absolute error criterion, but we do not consider whether

predictions are really qualitatively different. In this section, we consider a

method that examines the estimated prediction quality of each of the 11 esti-

mators using a discretized range of error values.

Algorithm 6 shows the pseudo-code of the evaluation algorithm that com-

putes an estimated quality value for each prediction. The idea is that rather

than focusing on the distance between a prediction and the observed value,

we give a fixed distance value that indicates how close the prediction is to an

observed value. The distance between the prediction and the observed value

is divided into levels. The closer a level’s boundary to the observed value, the

smaller the distance value that the level will get.

In this way, if two estimators have predictions belonging to the same level,

we say the quality of the predictions made by these two estimators is the

same. Based on this, we repeat the experiment described in the last section,

except the evaluation method is replaced by examining the estimated quality of
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Algorithm 6 Pseudo-code for calculating prediction performance based on
the estimated quality of each prediction

For Each test observation instance

tm = testObservation.meanOfRunningtime

For Each estimator

error[estimator ] = Double.Max

estimatedRunningtime = estimator .predict(testObservation)

IF estimatedRunningtime <= 1.5 × tm AND
estimatedRunningtime >= 0.5 × tm

error[estimator ] = 150
End IF

IF estimatedRunningtime is a value between the upper and lower limits
of the estimated population mean of testObservation in 95% CI

error[estimator ] = 95
End IF

IF estimatedRunningtime is a value between the upper and lower limits
of the estimated population mean of testObservation in 90% CI

error[estimator ] = 90
End IF

IF estimatedRunningtime is a value between the upper and lower limits
of the estimated population mean of testObservation in 70% CI

error[estimator ] = 70
End IF

IF estimatedRunningtime is a value between the upper and lower limits
of the estimated population mean of testObservation in 50% CI

error[estimator ] = 50
End IF

IF estimatedRunningtime <= 0
error[estimator ] = Double.Max

End IF

End For

For Each estimator

IF error[estimator ] == MIN(error)
numOfWins[estimator ] += 1

End IF

End For

End For
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Rank Estimator Percentage of wins

1 LadR 15%

2 BC 13%

3 nnlsR 11%

4 OneTest 10%

4 LADDER 10%

6 LsR 9%

7 LadF 8%

8 LsF 7%

9 PSLR 6%

9 nnlsF 6%

11 LsSeq 2%

Table 5.7: A ranked list of the 11 estimators. Ranking positions are based on
the experimental results of the prediction performance of the 11 estimators over
41 WEKA machine learning algorithms under nine different training/testing
setups, using absolute errors as the evaluation criterion

each prediction. Figure 5.5 shows the prediction performance curves of the 11

estimators while the size of training data increases. The values for “percentage

of wins” are calculated by counting the number of wins based on the estimated

quality of each prediction divided by the number of tests performed for a

particular size of training data. We can see that the estimators LadR and

BC outperform the others when the training data sizes are small (from 5

to 8). After that, as the size of training data increases (from 9 to 13), the

prediction performance of LsR, LADDER, nnlsR, LadF and OneTest is quite

close. Overall, estimator LadR outperforms the other estimators.

Table 5.7 shows the ranked list for this experiment. It can be seen that

the estimators LadR (least absolute deviations based on a restricted linear

regression model) and BC (Box-Cox transformation) outperform the other

estimators. Also, we can see that, on the whole, the prediction quality of the

estimators nnlsR, OneTest, LADDER, LsR and LadF is actually very close.

83



Data set # of instances # of attributes # of class labels

hypothyroid 3772 30 4

segment 2310 20 7

kr-vs-kp 3196 37 2

sick 3772 30 2

letter 20000 17 26

waveform-5000 5000 41 3

mushroom 8124 23 2

credit-g 1000 21 2

splice 3190 62 3

Table 5.8: Nine UCI data sets with detailed information

5.7 Evaluation using UCI data sets

In this section, we show experimental results obtained using the 11 estimators

to predict the running time of the SMO algorithm building models on real

world data sets. Nine UCI (Asuncion & Newman, 2007) data sets in total

have been used for this experiment. Table 5.8 shows detailed information

about those data sets. For each data set, each of the 11 estimators is applied

using up to 16% (1%, 2%, 4%, 8% and 16%) of the full data set to generate

five training data points.

The running time estimates for the SMO algorithm building models on

these nine UCI data sets are given in Table 5.9. The values under the column

“Mean RT” are the mean running time of SMO building model on a full data

set, obtained by averaging running time values of five runs. The values under

each estimator are their running time estimates for the SMO algorithm building

model on the corresponding data set. These running time estimates of the 11

estimators are based on up to 16% of a full data set.

We counted the number of wins evaluated using the absolute error (see

Algorithm 5) and the prediction quality (see Algorithm 6) criteria. For

the first method, a win is indicated by a “•”; for the second method, a win is

indicated by a “◦”. From Table 5.9, it can be seen that the estimator LadF
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has the highest number of wins (four wins) in the absolute error evaluation

test. In the prediction quality evaluation test, the estimator LadR has the

highest number of wins (eight wins), and estimator LadF is second best with six

wins; estimator OneTest is third with five wins. The running time prediction

problems simulated by this experiment are similar to a real application of these

estimators. We can see that in both evaluation methods, the performance

of LAD-based estimators is superior to least-squares-based estimators. The

performance of transformation based estimators, PSLR, BC and LADDER, is

very close.

5.8 Conclusions

In this chapter, we first discussed experimental results based on the prediction

performance of 11 estimators predicting the running times of 41 WEKA ma-

chine learning algorithms when used for building models on an artificial data

set. Our results show that LadR is the best running time estimator among the

11 estimators proposed in this work, and it outperforms the other estimators

in terms of two different evaluation strategies. The performance of the estima-

tors LadF, OneTest, BC and LADDER is reasonably good for some specific

algorithms, but not in general. In Section 5.7, we also considered experimen-

tal results obtained using the 11 estimators for predicting the running time of

WEKA’s SMO classifier on nine real world data sets. The results show that

the estimators LadF and LadR outperform the other estimators based on the

two evaluation strategies used.

Based on the experimental results, we conclude that in the running time

prediction problems examined in this work, LAD (least absolute deviations)

based running time estimators outperform least-squares-based estimators when

both use the same underlying linear regression models.
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Chapter 6

Conclusions

This thesis proposed eleven sampling-based running time estimators, and em-

pirically evaluated their predictive performance. This was done by predicting

the running times of 41 WEKA machine learning algorithms, building models

on both artificial and real world data sets. Chapters 2 and 3 described the

ideas underlying the construction of a sampling-based running time estimator.

We explained that sampling-based running time prediction, by its very nature,

is a function approximation problem. From a theoretical perspective, mathe-

matical asymptotic analysis forms the foundation for sampling-based running

time prediction methods. From a practical point of view, employing an appro-

priate running time measurement method, and applying statistical procedures

to the observed data points is necessary. Chapter 4 focused on running time

measurement tools and point estimation methods, and explained that running

time measurement by itself is a very difficult problem in two regards. One

is that we need a measuring tool that is able to obtain a relatively accurate

running time; another is that we need to use a point estimation method to es-

timate the true running time of an algorithm. Both have a great influence on

the predictive performance of a running time estimator. Experimental results

for the estimators proposed in this thesis were presented in Chapter 5.

6.1 Main results and contributions of this thesis

Our experimental results show that the least absolute deviations (LAD) based

running time estimators outperform the least-squares-based estimators for the
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running time prediction problems discussed in this work. This finding appears

to be novel, we did not find any research literature that has revealed a similar

result. Another main result is that OneTest, the regression meta learner in-

troduced in Chapter 3, is a competitive running time estimator, or regression

meta learner, for running time prediction. It can be applied with arbitrary

base estimators, so the idea can be applied whenever a new estimator is devel-

oped. We also found that, in general, when using the least-squares, the LAD,

and the non-negative least-squares (NNLS) method as running time estima-

tors, the predictive performance of these algorithms working on a restricted

linear model (see Equation 3.3, Sections 3.7, 3.10, and 3.12) is better than that

obtained from a “full” model (see Sections 3.6, 3.9, and 3.11).

Our experimental results show that the predictive performance of least-

squares-based estimators can be strongly affected by the presence of noise

in the training data points. It is clear that the least-squares fit does not

always satisfy the monotonicity assumption (see figures in Sections E.1 and

E.2 in Appendix E). Although the NNLS algorithm can force the least-squares

algorithm to satisfy the monotonicity assumption by adding constraints to the

linear regression model, the resulting fit is likely to be an upper bound, and in

some cases far away from the observed data points (Section 5.4 and Appendix

E).

This thesis makes several methodological contributions to research. These

contributions are:

• the use of Box-Cox, and ladder transformations, as well as LAD-, and

NNLS-based estimators for sampling-based running time prediction (Chap-

ter 2);

• construction of a base-learner-independent regression meta learner for

sampling-based running time prediction (Chapter 3);

• a method for modeling the running time function using augmented mul-

tiple linear regression models (both restricted and full versions) in terms
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of the input sizes (Chapter 3);

• a wrapper-based feature subset selection method for a least-squares-

based running time estimator (Chapter 3);

• a method for evaluating the predictive performance of running time es-

timators by examining the absolute error of predictions (Chapter 5);

• a method for evaluating the predictive performance of running time es-

timators by examining the quality of each prediction (Chapter 5);

The empirical contributions are:

• an experiment based on real world data sets used to evaluate the predic-

tive performance of running time estimators (Chapter 5);

• experimental results for predicting the running time for 41 WEKA al-

gorithms when used for building models on an artificial data set in nine

different training data sampling setups (Chapter 5).

6.2 Future work

There are some questions for future research resulting from the issues addressed

in this thesis. One question is whether the running time prediction meth-

ods proposed can be used to improve the accuracy of estimating the function

CPU(n) in Equation 1.1 of Section 1.2. If that is the case, then the accuracy

of the cost model stated by Equation 1.1 can be improved.

An issue raised when using least-squares-based regression methods for the

problem of sampling-based running time prediction is that least-squares-based

regression is very good at fitting the observed data points, but not at extrap-

olation. One reason is that the returned polynomial running time function

may not be a monotonic function, thus it may not satisfy the trend assump-

tion. However, although we employed the NNLS algorithm to return non-

negative predictions, the resulting running time function is still not competitive
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with LAD-based algorithms. One avenue for future research is to investigate

whether a least-squares-based algorithm can be extended to be more adequate

for the monotonicity assumption inherent in the running time prediction prob-

lem.

To be of practical use, ideally, a running time estimator should finish its

computation (including sampling and model construction) in a few seconds on

a moderately powerful computer. In order to achieve this goal, the number

of samples needs to be as small as possible. One direction for future research

is to investigate how to compute an optimal sampling strategy for a machine

learning algorithm and its input instance.

Feature selection is another avenue for future research. We did not ap-

ply the wrapper-based feature subset selection method to estimators other

than least-squares based ones, so one direction for future research is to ap-

ply wrapper-based feature subset selection methods to LAD- or NNLS-based

estimators.

As mentioned in Chapter 4, the accuracy of running time measurements

of an estimator can be crucial when the sampling instance completes its com-

putation in a very short time, such as under one second. One direction for

future research is to design and implement a more sophisticated, ideally noise

free and system-independent running time measurement tool.

This thesis proposed eleven sampling-based running time estimators. There

are many other applications of these running time prediction methods, some of

which have been discussed in Chapter 1. The experimental results presented

in this thesis show that, with some care in the sampling stage, by applying

appropriate transformations on the running time observations and then using

suitable curve fitting algorithms, it is possible to obtain useful running time

predictions and an approximate running time function for the model construc-

tion time of a given machine learning algorithm.
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Appendix A

Proof—NNLS solution vector

The following discussion and proof are extracted and adapted from (Lawson

& Hanson, 1974). The NNLS algorithm gives a solution vector for the non-

negative least-squares. On termination the solution vector a satisfies

aj > 0, j ∈ P ;

aj = 0, j ∈ Z,

and is a solution vector for the least-squares problem

XPa ∼= f.

The dual vector w satisfies

wj > 0, j ∈ P ;

wj = 0, j ∈ Z,

and

w = XT (f −Xa).

The above equations constitute the Kuhn-Tucker conditions characterizing a

solution vector a for problem NNLS.

Before discussing the convergence of algorithm NNLS it will be convenient

to establish the following lemma:
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Lemma A1: Let A be an m × n matrix of rank n and let b be an m-vector

satisfying

AT b =



0

.

.

.

0

ω


(A.1)

with ω > 0.

If â is the least-squares solution of Aa ∼= b, then

ân > 0,

where ân denotes the nth component of â.

Proof : Let Q be an m × m orthogonal matrix that zeros the sub-diagonal

elements in the first n− 1 columns of A, thus

Q[A : b] =

 R s u

0 t v

 , (A.2)

where R is upper triangular and nonsingular. Since Q is orthogonal the con-

ditions (A.1) imply

RTu = 0 (A.3)

and

sTu+ tTv = ω > 0. (A.4)

Since R is nonsingular, Equation (A.3) implies that u = 0. Thus Equation

(A.4) reduces to

tTv = ω > 0.

From equation (A.2) it follows that the nth component ân of the solution
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vector â is the least-squares solution of the reduced problem

tan ∼= v. (A.5)

Since the pseudoinverse of the column vector t is tT/(tT t), the solution of problem

(A.5) can be immediately written as

ân =
tTv

tT t
=

ω

tT t
> 0,

which completes the proof of Lemma A1.
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Appendix B

A list of 41 WEKA algorithms

used for this work
RandomForest

SMO

BFTree

DecisionStump

MultilayerPerceptron

ClassificationViaRegression

ConjunctiveRule

Logistic

J48

LADTree

DecisionTable

J48graft

StackingC

AttributeSelectedClassifier

ClassificationViaClustering

OneR

NNge

RBFNetwork

IB1

PART

ADTree

Stacking

RandomTree

LWL

AdaBoostM1

IBk

Bagging

Vote

BayesNet

FT

DTNB

Ridor

KStar

NBTree

LMT

NaiveBayes

ZeroR

REPTree

SimpleCart

VotedPerceptron

JRip
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Appendix C

Data set generator

In this Appendix, parameters used for the data generator are given.

Generator: “weka.datagenerators.classifiers.classification.Agrawal”

Parameter S: 1

Parameter F : 1

Parameter P : 0.05

Header of the data set:

@attribute salary numeric

@attribute commission numeric

@attribute age numeric

@attribute elevel {0,1,2,3,4}

@attribute car {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}

@attribute zipcode {0,1,2,3,4,5,6,7,8}

@attribute hvalue numeric

@attribute hyears numeric

@attribute loan numeric

@attribute group {0,1}
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Appendix D

Additional results

This Appendix gives some figures and tables of the experimental results that

are not included in the main text.
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Rank Estimator Percentage of wins

1 LadR 22%

2 OneTest 15%

3 BC 13%

4 LADDER 12%

5 LsR 11%

6 LsF 7%

6 LadF 7%

6 nnlsR 7%

9 PSLR 4%

10 lsSeq 1%

11 nnlsF 1%

Table D.2: A ranked list of the 11 estimators. Ranking positions are based
on the prediction performance of the 11 estimators over 41 WEKA machine
learning algorithms under nine different training/testing setups, using absolute
error as the evaluation criterion. Running time data were obtained using
method B described in Section 4.3

Rank Estimator Percentage of wins

1 LadR 16%

2 BC 15%

3 OneTest 13%

3 LADDER 13%

5 LsR 11%

6 nnlsR 10%

7 PSLR 6%

7 LsF 6%

7 LadF 6%

10 LsSeq 2%

11 nnlsF 1%

Table D.3: A ranked list of the 11 estimators. Ranking positions are based on
the experimental results of the prediction performance of the 11 estimators over
41 WEKA machine learning algorithms under nine different training/testing
setups, using absolute errors as the evaluation criterion. Running time data
were obtained using method B described in Section 4.3
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Appendix E

Curve fitting using least-squares,

LAD and NNLS

This Appendix gives the curves fitted by using least-squares, LAD and NNLS

algorithms on running time data of 41 WEKA machine learning algorithms.

E.1 Curves - running time data measured using

method A

The running time data used in the following figures were obtained using the

method A described in Section 4.3.
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Figure E.1: Running time data curve fitting
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Figure E.2: Running time data curve fitting
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Figure E.3: Running time data curve fitting
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Figure E.4: Running time data curve fitting
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Figure E.5: Running time data curve fitting
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Figure E.6: Running time data curve fitting
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E.2 Curves - running time data measured using

method B

The running time data used in the following figures were obtained using the

method B described in Section 4.3.

 0

 200

 400

 600

 800

 1000

 0  20000  40000  60000  80000  100000

R
un

ni
ng

 ti
m

e 
(m

s)

Input size

ZeroR
NNLS fit

least-squares fit
LAD fit

(a) ZeroR

Figure E.7: Running time data curve fitting
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Figure E.8: Running time data curve fitting
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Figure E.9: Running time data curve fitting
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Figure E.10: Running time data curve fitting
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Figure E.11: Running time data curve fitting
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Figure E.12: Running time data curve fitting
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