
Full Model Selection in the Space of Data Mining Operators

Quan Sun, Bernhard Pfahringer and Michael Mayo
Department of Computer Science

The University of Waikato, New Zealand

{qs12, bernhard, mmayo}@cs.waikato.ac.nz

1 Introduction

 In this paper, we propose a framework and a novel

algorithm for the full model selection (FMS) problem. The

proposed algorithm, combining both genetic algorithms (GA)

and particle swarm optimization (PSO), is named GPS, in

which a GA is used for searching the optimal structure of a

data mining solution, and PSO is used for searching the

optimal parameter set for a particular structure instance.

References

[1] H. J. Escalante, M. Montes, and L. E. Sucar. Particle swarm model

selection. Journal of Machine Learning Research, 10:405 – 440,

2009.

[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.

Witten. The WEKA data mining software: An update. SIGKDD

Explorations, 11(1), 2009..

2 The DMO space

 We define a search space that consists of all data

mining operators that are applicable to a given dataset for a

user-specified goal, such as a set of outlier filters, a set of

feature selection methods, a set of data transformation

techniques and a set of machine learning algorithms. In this

sense, we call the subject of interest “the space of data

mining operators (DMO)”, or simply “the DMO space”.

Figure 1. An illustration of

the DMO space.

Table 1. WEKA [2] algorithms and filters that are used as the

DMO objects in the GPS algorithm

5 Conclusions

 Our experimental results show that the GPS algorithm

outperforms the PSMS system, the state-of-the-art PSO-

based FMS algorithm on the ten real-world datasets studied

in this paper. In the longer version of this paper, we also

theoretically examined the feasibility of using the divide and

conquer idea for speeding up the GPS algorithm.

3 The GA-PSO-FMS (GPS) system

 The basic steps of the GPS algorithm are: for each GA

iteration, firstly a population of DMO template instances is

randomly generated (Figure 2 and Figure 3). Then, the

placeholders of each template instance are randomly

populated with the DMO objects in Table 1. Then, PSO is

used for searching an optimal parameter setting for each

template instance. The population is sorted by PSO-based

evaluation scores. At the end of each GA iteration, typical GA

operators can be applied for generating new template

instances. The above procedure is repeated T times.

Figure 4. Pseudocode of the GPS algorithm

Figure 5. AUC performance

comparison for the MiniBooNe.

particle identification dataset.

4 Experimental Results

 We experiment with ten real-world classification

problems. To test the performance of the GPS algorithm, we

implemented a variant of the PSMS system (a PSO-based

FMS algorithm) proposed in [1] with the DMO objects defined

in Table 1. Figure 6 shows a summary of a comparison of

AUC performance between GPS and PSMS under 30

different configurations over ten datasets.

Data Sampling Date Cleansing Feature Trans. Feature Sel.

SMOTE oversampling

Resample with

replacement

Resample without

replacement

Do nothing

NumericCleaner

RemoveUseless

ReplaceMissingValues

Do nothing

Normalize

Standarlize

Center

AddNoise

Discretize

NominalToBinary

NumericTransformation

Do nothing

CfsSubsetEval

InfoGainAttributeEval

GainRatioAttributeEval

PrincipalComponents

ChiSquaredAttributeEval

Do nothing

Algorithm HyperParameters

Bagging with RandomTree Num.Bagging.Iterations[int], Num.Atts[int], Tree.Depth[int]

Bagging with REPTree Num.Bagging.Iterations[int], Num.Folds[int], Tree.Depth[int]

AdaBoost.M1 with DecisionStump Num.Boosting.Iterations[int], UseResample[boolean]

LogitBoost with DecisionStump Num.Boosting.Iterations[int], UseResample[boolean]

Bagging with J48 Decision Tree Num.Bagging.Iterations[int], TreePrune[boolean], Conf.[real]

RotationForest with REPTree Num.Iterations[int], PctRemoved [real], Projection {PCA, RandomProj}

 DMO space

Operator A

Operator B

Operator C

Dataset T

… …

Operator D

A Solution

Figure 2. A graphical representation

of the DMO template.

Data

Sampling

Feature

Transformation

Data

Cleansing

Feature

Selection

An Algorithm

SMOTE over-sampling [Data Sampling]

Log Transformation [Feature Trans.]

IQR outlier detection [Data Cleansing]

InfoGain-based Feature selector [Feature Selection]

AdaBoost.M1[Algorithm]

Figure 3. A graphical representation of a DMO solution template

instance.

BasicGPSProcedure(T,P,M,W,G):
Input: T (num.generations for GA), P (population size for GA),

M (num.evolutions for PSO), W (swarm size for PSO), G (goal

metric)

1 ►

2 for i ← 1 to T

3 Get P random template instances

4 Populate template instances with objects in Table 1

5 Use BasicPSOProcedure(M,W,G,I) to search for the

optimal parameter set for each template instance I

(optimizing the goal metric G), and assign an evaluation

score to each template instance I

6 Sort the population by evaluation scores

7 Do crossover // we use simple one point crossover

between the top 20% template instances

8 Do mutation // we randomly choose 30% template

instances from the population, and randomly change one

DMO in each template instance

9 Replace the last N template instances with the N new

template instances generated in crossover and mutation,

where N = (0.2 + 0.3) x P

10 solution-best ← population-best

11 endfor

12 return solution-best

BasicPSOProcedure(M,W,G,I,c1=2.0,c2=2.0):
Input: M (num.evolutions), W (swarm size), G (goal

metric, default AUC), I (a solution template instance),

c1, c2 are the weighting coefficients for the personal

best the global best positions, default c1=c2=2.0

1 ►

2 population ← Ø

3 particle p.global-best ← Ø

4 Initialize swarm (W particles) based on I

5 for i ← M

6 foreach particle p in population do

7 UpdateVelocity(p, c1, c2)

8 UpdatePosition(p)

9 p.G ← EvaluateTemplateInstance(p,G,I)

10 if p.G ≥ p.personal-best

11 p.personal-best ← p.position

12 if p.G ≥ p.global-best

13 p.global-best ← p.personal-best

14 endfor

15 endfor

16 return p.global-best

Figure 6. AUC performance

between GPS and PSMS under

30 different configurations.

0

5

10

15

20

25

GPS PSMS

N
u

m
b

e
r

o
f

W
in

s

0.955

0.96

0.965

0.97

0.975

A
U

C

g=10 g=20 g=30

GPS

PSMS

AdaBoost.M1

RandomForests

