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1 Introduction 

 In this paper, we propose a framework and a novel 

algorithm for the full model selection (FMS) problem. The 

proposed algorithm, combining both genetic algorithms (GA) 

and particle swarm optimization (PSO), is named GPS, in 

which a GA is used for searching the optimal structure of a 

data mining solution, and PSO is used for searching the 

optimal parameter set for a particular structure instance. 
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2 The DMO space 

 We define a search space that consists of all data 

mining operators that are applicable to a given dataset for a 

user-specified goal, such as a set of outlier filters, a set of 

feature selection methods, a set of data transformation 

techniques and a set of machine learning algorithms. In this 

sense, we call the subject of interest “the space of data 

mining operators (DMO)”, or simply “the DMO space”. 

Figure 1. An illustration of 

the DMO space. 

Table 1. WEKA [2] algorithms and filters that are used as the 

DMO objects in the GPS algorithm 

5 Conclusions 

 Our experimental results show that the GPS algorithm 

outperforms the PSMS system, the state-of-the-art PSO-

based FMS algorithm on the ten real-world datasets studied 

in this paper. In the longer version of this paper, we also 

theoretically examined the feasibility of using the divide and 

conquer idea for speeding up the GPS algorithm. 

3 The GA-PSO-FMS (GPS) system 

 The basic steps of the GPS algorithm are: for each GA 

iteration, firstly a population of DMO template instances is 

randomly generated (Figure 2 and Figure 3). Then, the 

placeholders of each template instance are randomly 

populated with the DMO objects in Table 1. Then, PSO is 

used for searching an optimal parameter setting for each 

template instance. The population is sorted by PSO-based 

evaluation scores. At the end of each GA iteration, typical GA 

operators can be applied for generating new template 

instances. The above procedure is repeated T times. 

Figure 4. Pseudocode of the GPS algorithm  

Figure 5. AUC performance 

comparison for the MiniBooNe. 

particle identification dataset. 

4 Experimental Results 

 We experiment with ten real-world classification 

problems. To test the performance of the GPS algorithm, we 

implemented a variant of the PSMS system (a PSO-based 

FMS algorithm) proposed in [1] with the DMO objects defined 

in Table 1. Figure 6 shows a summary of a comparison of 

AUC performance between GPS and PSMS under 30 

different configurations over ten datasets.  
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Algorithm HyperParameters 

Bagging with RandomTree Num.Bagging.Iterations[int], Num.Atts[int], Tree.Depth[int] 

Bagging with REPTree Num.Bagging.Iterations[int], Num.Folds[int], Tree.Depth[int] 

AdaBoost.M1 with DecisionStump Num.Boosting.Iterations[int], UseResample[boolean] 

LogitBoost with DecisionStump Num.Boosting.Iterations[int], UseResample[boolean] 

Bagging with J48 Decision Tree Num.Bagging.Iterations[int], TreePrune[boolean], Conf.[real] 

RotationForest with REPTree Num.Iterations[int], PctRemoved [real], Projection {PCA, RandomProj} 
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Figure 2. A graphical representation 

of the DMO template. 
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Figure 3. A graphical representation of a DMO solution template 

instance. 

BasicGPSProcedure(T,P,M,W,G): 
Input: T (num.generations for GA), P (population size for GA), 

M (num.evolutions for PSO), W (swarm size for PSO), G (goal 

metric) 

 

1 ► 

2 for i ← 1 to T 

3 Get P random template instances 

4 Populate template instances with objects in Table 1 

5 Use BasicPSOProcedure(M,W,G,I) to search for the 

optimal parameter set for each template instance I 

(optimizing the goal metric G), and assign an evaluation 

score to each template instance I 

6 Sort the population by evaluation scores 

7 Do crossover // we use simple one point crossover 

between the top 20% template instances 

8 Do mutation // we randomly choose 30% template 

instances from the population, and randomly change one 

DMO in each template instance 

9 Replace the last N template instances with the N new 

template instances generated in crossover and mutation, 

where N = (0.2 + 0.3 ) x P 

10 solution-best ← population-best 

11 endfor 

12 return solution-best 

BasicPSOProcedure(M,W,G,I,c1=2.0,c2=2.0): 
Input: M (num.evolutions), W (swarm size), G (goal 

metric, default AUC), I (a solution template instance), 

c1, c2 are the weighting coefficients for the personal 

best the global best positions, default c1=c2=2.0 

 

1 ► 

2 population ← Ø  

3 particle p.global-best ← Ø  

4 Initialize swarm (W particles) based on I 

5 for i ← M 

6 foreach particle p in population do 

7     UpdateVelocity(p, c1, c2) 

8     UpdatePosition(p) 

9     p.G ← EvaluateTemplateInstance(p,G,I) 

10     if p.G ≥ p.personal-best 

11          p.personal-best ← p.position 

12            if p.G ≥ p.global-best  

13                p.global-best ← p.personal-best  

14  endfor  

15 endfor 

16 return p.global-best 

 

 

 

Figure 6. AUC performance 

between GPS and PSMS under 

30 different configurations. 
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