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ABSTRACT
During  the  last  decade,  with  the  growth  of  computing  power, 
machine learning algorithms have been widely adopted and used 
in various fields of computer science and real world applications. 
Currently,  users  of  machine learning algorithms do not  usually 
receive feedback on when a given algorithm will be finished with 
building a model for a particular data set. In this paper, we first 
investigate how to use sampling-based techniques to predict the 
running  time  of  a  machine  learning  algorithm  training  on  a 
particular  data  set.  Secondly,  we  empirically  evaluate  a  set  of 
sampling-based  running  time  prediction  methods.  Experimental 
results  show  that,  with  some  care  in  the  sampling  stage,  by 
applying  designed  transformations  on  the  running  time 
observations  and  then  using  regression  techniques  as  the  base 
estimation  model,  it  is  possible  to  obtain  useful  average-case 
running time predictions for a given machine learning algorithm 
building a model on a particular data set. In this study, WEKA [7] 
machine learning algorithms are used for all experiments.

Categories and Subject Descriptors
I.2.6  [Artificial  Intelligence]:  Learning  –  machine  learning,  
parameter learning.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Machine  learning,  sampling-based,  runtime  prediction,  linear 
regression methods.

1.INTRODUCTION
There are two kinds of approaches that can be used to estimate the 
running time of an algorithm. The first is to use knowledge about 
the underlying algorithm to do a theoretical performance analysis 
in  the  Random  Access  Machine  model  [2],  and  then  use  this 
information to  estimate  the running time.  This  approach works 
when  the  target  algorithm  is  simple.  For  more  complex 
algorithms,  such as  machine learning algorithms,  this  approach 
can be a very difficult task. Another kind of approach is called 
'empirical  algorithm  analysis'.  Empirical  algorithm  analysis 
employs sampling-based techniques to construct a function that is 
an approximation  to  the  true running  time function  of  a  given 
algorithm.  In  this  paper,  we  focus  on  the  latter  approach.  In 
Section 2, background about algorithm analysis and basic ideas of 
empirical algorithm analysis are given. Previously, in the domain 
of  empirical  algorithm  analysis,  researchers  were  interested 
mainly  on  obtaining  closed  form  expressions  for  algorithms 

complexity.  McGeoch  [4]  present  several  sampling-based 
techniques for curve bounding. These techniques are discussed in 
Section 3. The brief implementation details of six running time 
estimators  examined  in  this  study  are  given  in  Section  4. 
Experimental results are given in Section 5.

2.BACKGROUND
In  mathematics,  computer  science  and  related  disciplines,  an 
algorithm is a step-by-step procedure for calculating a given task 
with  a  finite  amount  of  resources,  such  as  time,  storage  and 
computer  memory  usage.  A  given  task  may  be  completed  by 
using  different  algorithms  with  a  different  set  of  resource 
requirements. One goal of algorithm study is to find methods that 
can be used to precisely calculate – or at least approximate – how 
much of a particular resource is required for a given algorithm on 
a particular task. Such study is referred to as algorithm analysis. 
In  this  paper,  methods  that  can  predict  the  running  time  of 
machine learning algorithms are  investigated,  and evaluated by 
experiments. This task formally can be thought of as a method of 
describing  limiting  behavior.  For  instance,  let f and g be 
two  functions  of  a  natural  number n . If f and g are 
asymptotically equivalent as n∞ , then:

lim n∞
f n
g n

 = 1.

Assume f n is  the  running  time  function  of  an  algorithm, 
where n is the input size. The goal is to find a method that can 
automatically construct an estimation model (asymptotic function) 

gn  based on sampling-based techniques, and then use this 
model  to  predict  the  running  time t , where t=f n .
Although the methods discussed in this paper can be applied to 
algorithms  in  general,  only  the  running  time  estimation 
performance of these methods on machine learning algorithms is 
investigated.

Empirical Algorithm Analysis
The asymptotic behavior of an algorithm can be analyzed based 
on  experimental  observations.  In  this  approach,  firstly,  the 
running  times  of  an  algorithm  for  different  sizes  of  input  are 
observed.  Secondly,  a  curve  fitting  or  curve  bounding  rule  is 
applied for formulating the asymptotic trend or behavior. The uses 
of  running  time  observations  and  experimental  results  can  be 
different  from problem to  problem.  Having  these  experimental 
data, one can draw conclusions about the asymptotic behavior of 
an algorithm. However, no inference about asymptotic behavior is 
reliable, since one can observe only a finite number of input sizes. 
Another  problem  is  due  to  the  random  noise  caused  by  the 
complexity of the machine model and experimental environment. 



3.EMPIRICAL ASYMPTOTIC ANALYSIS
In  this  section,  we  consider  methods  for  empirical  asymptotic 
analysis.  It  is  assumed  that  the  observed  running  time t of  an 
algorithm can be expressed by a unknown function t n , where

n denotes  the  input  size.  An  experiment  produces 
observations,  which  is  a  set  of {n ,t } pairs.  Having  these 
observations, the goal of empirical asymptotic analysis is to find 
methods  that  can  construct  a  function g n that  is  an 
asymptotic  approximation  to t n . In  this  section,  existing 
empirical  asymptotic  analysis  approaches  are  discussed.  The 
concepts  and  approaches  described  in  this  section  form  the 
theoretical foundation of the running time estimators implemented 
and evaluated in this study.

Numerical Approaches
Guess Ratio Test
In the guess ratio test,  it  is  assumed that the main term of the 
underlying algorithm's running time function can be formulated 
by gn=nc ,c0, where n is  the  input  size.  Let t n denote 
the observed running time. In [4], the guess ratio r n is defined 

as
t n
g n

. If the ratio grows as the input size increases, then gn

underestimates the running time; if the ratio converges to 0 as the 
input size increases, then the gn  is an overestimate. In the case 
that the ratio converges to some constant b greater than 0, then
gn is a good estimate for the growth rate of t n.

Guess Difference Test
The guess difference test [4] works similarly to the guess ratio test 
in  the  sense  of  iterating  over  guess  functions.  Rather  than 
evaluating  the  guess  ratio  curves,  the  guess  difference  test 
evaluates the difference defined as gn–t n . The test  begins 
with  guessing  a  function  having  the  form gn=an b where a
and b are  positive  rationals.  In  theory,  if  the  difference  curve 
increases monotonically with n , then the guess function gn is 
not O  t n; if the difference curve monotonically decreases in 
the range from n1 to nk , then monotonically increases after nk1 ,
the guess difference test concludes that the guess function gn
has the “Down-Up” property. Then the test  needs to search for 
other  difference  curves  that  have  the  “Down-Up”  property  by 
adjusting the coefficient a until a new “Down-Up” curve is found. 
When that happens, the guess function is assumed to overestimate 
the  exponent b of t n. In  this  case,  the  guess  difference  test 
needs  to  try  another  exponent,  namely b ' where 0b 'b , and 
applies the same “Down-Up” curve searching procedure again. 

Sampling-based Approaches
Simple Linear Regression
Simple  linear  regression  is  a  method  that  studies  the  relation 
between a response variable y and a single explanatory variable
x . It assumes that for each value of x , the observed values of the 

response  variable y are  normally  distributed  about  a  mean  that 
depends on x . The statistical model for simple linear regression 
states that the observed response y i when the explanatory variable 
takes  the  value x i is y i=b0a1x ie i , y i=b0a 1x i is  the  mean 
response when x=x i , and e i are the deviations that are assumed 
to be normally distributed with mean 0 and standard deviation s ;

e i is also referred to as the random error. This is used as a basis 
for the techniques that follow.

Power Test
As in the guess difference test, the power test method [3], [4] also 
assumes t n can  be  formulated  by gn =an b where

a and b are positive rationals. To find the proper a and 
b , the power test applies a logarithmic transformation on each 
{n ,t } pair  in  the  observations.  Secondly,  it  examines  the
{n' ,t ' } pairs,  where n '=logn ,  t ' =logt , to  see  whether 

they can be fitted by a simple linear regression line.

Ladder Transformations
The  power  family  of  transformations T y =y k or T x =xk

provides a set of transformations for “straightening” a single bend 
in the relationship between two variables, and is referred to as a 
family  of  “one-bend”  transformations  [4],  [6].  These 
transformations  can  be  used  on  either x or y . If  the 
transformations  are  ordered  according  to  the  exponent k , a 
sequence of power transformations is given. In [5], this is called 
the ladder of transformations. For example:

k=−1,−1
2

,0, 1
2

,1,2,

where the power transformation k=0 is to be interpreted as the 
logarithmic  transformation.  In  applying  the  idea  of  ladder 
transformations to  asymptotic analysis,   the procedure is to try 
several  transformations  of n for  the {n, t } pairs  in  the 
observations, where n corresponds to the explanatory variable x ,
t corresponds  to  the  response  variable y in  the  simple  linear 

regression  model,  and then  choosing that  transformation T i n
which make the points most nearly collinear. 

4.RUNNING TIME ESTIMATORS
Based on the theoretical foundation discussed in Section 3,  six 
sampling-based running time estimators, namely A1, A2, A3, A4, 
A5 and  A6,  were implemented for  this  study.  To  simplify  the 
description, we introduce some data abstractions. An Observation 
object is defined as a data structure consisting of an {n ,T } pair, 
where n is the input size, and T 〈t 1 , ... , tm 〉 , which is a vector of 
running  times  observed  from m runs,  for  input  size n. An 
Observations object  is  defined  as  a  data  structure  that  is  a 
collection of  Observation objects. Table 4.1 shows an example 
Observations  object  (without  actual  observed  values).  An 
Estimator takes  an  Observations object  as  input  to  build  an 
estimation  model  that  can  predict  the  running  time  of  a  given 
input  size.  The  'training  observations'  corresponds  to  the 
Observations object that is used to build an estimation model. The 
'testing observations' corresponds to the Observations object that 
is used to evaluate the prediction performance of a running time 
estimator.

Estimators
A1 – Power Rule with Simple Linear Regression
The A1 estimator (based on the power test) first applies a log-log 
transformation on each  Observation in the  Observations  object. 
Secondly, A1 builds a simple linear regression model based on the 
transformed Observations object. To predict the running time t for 
a given input size n , A1 uses the simple linear regression model 
to predict response variable t ' of explanatory variable n ' , where



n '=log n. Finally,  A1  gives  the  predicted  running  time  as
t=exp t '  .

A2 – Box-Cox Method with Simple Linear Regression
The  A2  estimator  (based  on  the  Box-Cox  method)  works  by 
searching  for  the  best  simple  linear  regression  model  after 
applying different transformations on the explanatory variable n – 
the  input  size.  The  Box-Cox transformations  are  controlled  by 
evaluating the exponent  of n , which is defined as:

T n=n, n={ n−1

n−1
if≠0

log n  if =0

In  this  work,  A2  applies  transformations  on n from  the  range
=0to 2.5 , where  is incremented by 0.1 in each step. There are 

a total of 26 transformations. Thus, A2 builds 26 simple linear 
regression models corresponding to the 26 transformations. The 
'best' simple linear regression model over these transformations is 
defined as  the one that  results  in  the lowest  squared error.  To 
predict the running time t for a given input size n , A2 uses the 
'best'  simple  linear  regression  model  to  predict  the  response 
variable t based  on  the  explanatory  variable n ' , where 
n '=T nbest .  

A3/A4 – Ladder Transformations with Simple Linear 
Regression
Estimator  A3  applies  the  most  commonly  used  power 
transformations  for  the  input  size n. These  transformations  are 
controlled  by  the  exponent k of gn , which  is  defined  as
T n = n k , where k is  set  to  0.5,  1  and  2.  Like A2 (Box-Cox 

estimator), A3 uses the 'best' simple linear regression model over 
these transformations. Rather than using the most common ladder 
transformations, A4 uses a set of ladder transformations that are 
designed for predicting an algorithm's running time. Running time 
functions can be ordered by growth rate, such as
logn , log2 n ,n ,n ,nlogn ,n1.1 , n1.2 , n1.3 ,... ,n1.9 ,n2.0 ,n2.1 , n2.2 ,
n2.3 ,... ,n2.9 , n3.0 .

A5/A6 – Advanced Ladder Transformations and 
Multiple Regression without/with Feature Selection
A5  uses  the  same  set  of  ladder  transformations  as  A4.  The 
difference  is  that  A5  uses  multiple  regression  as  the  base 
estimation model, which assumes the response variable depends 
on not one but multiple explanatory variables. The only difference 
between  A6  and  A5  is  that  A6  uses  feature  selection  before 
building the base multiple regression model.

5.EXPERIMENTAL RESULTS
This section shows the experimental results obtained using the six 
estimators  predicting  the  running  time  of  machine  learning 
algorithms.

Experimental Environment
The hardware and system specifications of the computer used for 
running all the experiments are:

Hardware 
Processor: 32-bit Intel Pentium 4 3.00GHz
Memory: 2GB

Software
Operating system: Ubuntu Linux 8.04 (Kernel Linux 2.6.24-19-
generic)
WEKA version: 3.5.7

The average CPU usage of other system processes while running 
an experiment was less than 5%.

Variance Reduction
Random noise leads to variability between runs of an algorithm 
taking the same input  instance  and may impede the  prediction 
performance  of  sampling-based  estimators.  When  generating 
running time observations, rather than simply using the running 
time of a single run to represent the running time of an algorithm 
M training on a subset of data set S, the multiple runs approach is 
employed  to  get  a  stable  running  time  representative  r of  M 
training on a subset  s. There are many possible choices for  r. In 
this  study,  the  sample  mean  and  the  upper/lower  limit  of  the 
estimated population mean with 95% confidence are employed. 
Not only the variation of running time contributes to the random 
noise, but also the method that is used to generate the subset of a 
data  set  S.  In  machine  learning,  for  classification  problems,  a 
training  set  S has  its  own class  distribution.  When sampling  a 
subset  of  size  k from  S,  a  simple  method  randomly  selects  k 
instances  from  S.  If  this  method  is  employed,  s does  not 
necessarily follow the same class distribution as S. In this study, a 
more sophisticated method is used, which generates a subset s that 
has  the  same  class  distribution  as  the  full  training  set  S.  This 
method is also known as stratified sampling.

Experimental Results
Due to the space limitations, we only list the main results of this 
study.

Table 1. The best running time sampling treatment for each 
estimator

Estimator Sampling treatment for 
running time observations 

Percentage of wins

A1 Upper limit of estimated 
population mean with 95% 
confidence

51%

A2 Upper limit of estimated 
population mean with 95% 
confidence

64%

A3 Upper limit of estimated 
population mean with 95% 
confidence

60%

A4 Lower limit of estimated 
population mean with 95% 
confidence

45%

A5 Lower limit of estimated 
population mean with 95% 
confidence

39%

A6 Upper limit of estimated 
population mean with 95% 
confidence

40%



Comparing Prediction Performance of a Single 
Estimator Using Different Sampling Treatments

Table 1 lists the best running time sampling treatment for each 
estimator. The result was obtained by running experiment over 23 
WEKA  machine  learning  algorithms  in  3  different  sampling 
treatments and 5 sampling setups for training observations.

Comparing Prediction Performance Between 
Estimators

Figure 1. Prediction performance curves of the six estimators 
while the size of Observations increases

Figure  1  shows  the  experimental  results  of  the  prediction 
performance  of  the  six  estimators  over  23  WEKA  machine 
learning  algorithms  in  14  different  sampling  setups.  Both  A2 
(based on Box-Cox transformations) and A4 (based on advanced 
ladder transformations) win for about 23% of the total 3703 tests. 
Estimator A6 wins about 22% of the 3703 tests. Note that Setup 1 
to Setup 14 are ordered by the number of training Observations. It 
can be seen that  when the size  of  the training  Observations is 
small, for example, from Setup 1 to Setup 6, estimators A2, A4 
and A6 outperform others. However, when the size of the training 
Observations increases,  the  prediction  performance  of  all  six 
estimators  gets closer. Overall, A2 and A4 outperform the other 
estimators.

6.CONCLUSIONS AND FUTURE WORK
Conclusions
Sampling-based  running  time  prediction  for  machine  learning 
algorithms,  by  its  very  nature,  is  a  function  approximation 
problem. From the theoretical perspective, mathematical analysis 
procedures, such as the asymptotic analysis approaches discussed 
in  Section  3,  form  the  fundamental  ideas  for  sampling-based 
running  time  prediction  methods.  From  the  practical  point  of 
view,  applying  variance  reduction  techniques  and  statistical 
treatments  to  the  running  time  observations  is  necessary.  The 
results  for  the  experiments  presented  in  Section  5  show  that 
estimators  using  the  95%  confidence  upper/lower  limit  of  the 
estimated population mean as the training data perform better than 
simply using the sample mean. All the estimators implemented in 
this  study  use  a  search  procedure  to  find  appropriate 
transformations  and  then  construct  regression  models  based  on 
transformed  observations.  The  experimental  results  show  that 
estimator A2 and estimator A4 outperform the other estimators, 
especially when the number of training observations is not large. 

The results also show that as the number of training observations 
increases,  the  prediction performance  of  all  six  estimators  gets 
closer. 

Future work
There are some questions left for future research, these include:

Random noise modeling
In this study, the random noise is modeled as the random error in 
linear  regression  models,  which  is  assumed  to  be  normally 
distributed.  However,  whether  the  random  noise  in  empirical 
algorithm analysis follows a normal distribution is still an open 
question.  Therefore,  one  direction  for  future  research  is  to 
investigate  whether  random  noise  can  be  modeled  more 
accurately. 

Overfitting problem in multiple regression models
Estimator A5 and A6 use multiple regression models as the base 
estimation model. The model usually gives a polynomial function 
that can be used to predict a future response variable. However, 
the polynomial function may not be a monotonic function, thus it 
might give a negative response prediction. One avenue for future 
research is to apply multiple regression models that can return a 
monotonic polynomial function.

Sampling setup
For practical use, ideally a running time estimator should finish its 
prediction computation in a few seconds on a moderate computer 
like the one used for this study. In order to achieve this goal, the 
size of the sampling setup needs to be  as small as possible. One 
direction for future research is to investigate how to compute an 
optimal sampling setup for a machine learning algorithm and its 
input instance.

Prediction performance evaluation
In this study, counting the number of wins based on the smallest 
absolute  error  is  employed  to  evaluate  estimators.  One  future 
research direction is to use more sophisticated evaluation methods 
to examine the prediction performance between estimators.
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