
Sampling-based Prediction of Algorithm Runtime
1st Author

1st author's affiliation
1st line of address
2nd line of address

Telephone number, incl. country code

1st author's email address

Quan Sun
Department of Computer Science

University of Waikato
Private Bag 3105

Waikato, New Zealand

qs12@cs.waikato.ac.nz

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT
During the last decade, with the growth of computing power,
machine learning algorithms have been widely adopted and used
in various fields of computer science and real world applications.
Currently, users of machine learning algorithms do not usually
receive feedback on when a given algorithm will be finished with
building a model for a particular data set. In this paper, we first
investigate how to use sampling-based techniques to predict the
running time of a machine learning algorithm training on a
particular data set. Secondly, we empirically evaluate a set of
sampling-based running time prediction methods. Experimental
results show that, with some care in the sampling stage, by
applying designed transformations on the running time
observations and then using regression techniques as the base
estimation model, it is possible to obtain useful average-case
running time predictions for a given machine learning algorithm
building a model on a particular data set. In this study, WEKA [7]
machine learning algorithms are used for all experiments.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – machine learning,
parameter learning.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Machine learning, sampling-based, runtime prediction, linear
regression methods.

1.INTRODUCTION
There are two kinds of approaches that can be used to estimate the
running time of an algorithm. The first is to use knowledge about
the underlying algorithm to do a theoretical performance analysis
in the Random Access Machine model [2], and then use this
information to estimate the running time. This approach works
when the target algorithm is simple. For more complex
algorithms, such as machine learning algorithms, this approach
can be a very difficult task. Another kind of approach is called
'empirical algorithm analysis'. Empirical algorithm analysis
employs sampling-based techniques to construct a function that is
an approximation to the true running time function of a given
algorithm. In this paper, we focus on the latter approach. In
Section 2, background about algorithm analysis and basic ideas of
empirical algorithm analysis are given. Previously, in the domain
of empirical algorithm analysis, researchers were interested
mainly on obtaining closed form expressions for algorithms

complexity. McGeoch [4] present several sampling-based
techniques for curve bounding. These techniques are discussed in
Section 3. The brief implementation details of six running time
estimators examined in this study are given in Section 4.
Experimental results are given in Section 5.

2.BACKGROUND
In mathematics, computer science and related disciplines, an
algorithm is a step-by-step procedure for calculating a given task
with a finite amount of resources, such as time, storage and
computer memory usage. A given task may be completed by
using different algorithms with a different set of resource
requirements. One goal of algorithm study is to find methods that
can be used to precisely calculate – or at least approximate – how
much of a particular resource is required for a given algorithm on
a particular task. Such study is referred to as algorithm analysis.
In this paper, methods that can predict the running time of
machine learning algorithms are investigated, and evaluated by
experiments. This task formally can be thought of as a method of
describing limiting behavior. For instance, let f and g be
two functions of a natural number n . If f and g are
asymptotically equivalent as n∞ , then:

lim n∞
f n
g n

 = 1.

Assume f n is the running time function of an algorithm,
where n is the input size. The goal is to find a method that can
automatically construct an estimation model (asymptotic function)

gn  based on sampling-based techniques, and then use this
model to predict the running time t , where t=f n .
Although the methods discussed in this paper can be applied to
algorithms in general, only the running time estimation
performance of these methods on machine learning algorithms is
investigated.

Empirical Algorithm Analysis
The asymptotic behavior of an algorithm can be analyzed based
on experimental observations. In this approach, firstly, the
running times of an algorithm for different sizes of input are
observed. Secondly, a curve fitting or curve bounding rule is
applied for formulating the asymptotic trend or behavior. The uses
of running time observations and experimental results can be
different from problem to problem. Having these experimental
data, one can draw conclusions about the asymptotic behavior of
an algorithm. However, no inference about asymptotic behavior is
reliable, since one can observe only a finite number of input sizes.
Another problem is due to the random noise caused by the
complexity of the machine model and experimental environment.

3.EMPIRICAL ASYMPTOTIC ANALYSIS
In this section, we consider methods for empirical asymptotic
analysis. It is assumed that the observed running time t of an
algorithm can be expressed by a unknown function t n , where

n denotes the input size. An experiment produces
observations, which is a set of {n ,t } pairs. Having these
observations, the goal of empirical asymptotic analysis is to find
methods that can construct a function g n that is an
asymptotic approximation to t n . In this section, existing
empirical asymptotic analysis approaches are discussed. The
concepts and approaches described in this section form the
theoretical foundation of the running time estimators implemented
and evaluated in this study.

Numerical Approaches
Guess Ratio Test
In the guess ratio test, it is assumed that the main term of the
underlying algorithm's running time function can be formulated
by gn=nc ,c0, where n is the input size. Let t n denote
the observed running time. In [4], the guess ratio r n is defined

as
t n
g n

. If the ratio grows as the input size increases, then gn

underestimates the running time; if the ratio converges to 0 as the
input size increases, then the gn  is an overestimate. In the case
that the ratio converges to some constant b greater than 0, then
gn is a good estimate for the growth rate of t n.

Guess Difference Test
The guess difference test [4] works similarly to the guess ratio test
in the sense of iterating over guess functions. Rather than
evaluating the guess ratio curves, the guess difference test
evaluates the difference defined as gn–t n . The test begins
with guessing a function having the form gn=an b where a
and b are positive rationals. In theory, if the difference curve
increases monotonically with n , then the guess function gn is
not O  t n; if the difference curve monotonically decreases in
the range from n1 to nk , then monotonically increases after nk1 ,
the guess difference test concludes that the guess function gn
has the “Down-Up” property. Then the test needs to search for
other difference curves that have the “Down-Up” property by
adjusting the coefficient a until a new “Down-Up” curve is found.
When that happens, the guess function is assumed to overestimate
the exponent b of t n. In this case, the guess difference test
needs to try another exponent, namely b ' where 0b 'b , and
applies the same “Down-Up” curve searching procedure again.

Sampling-based Approaches
Simple Linear Regression
Simple linear regression is a method that studies the relation
between a response variable y and a single explanatory variable
x . It assumes that for each value of x , the observed values of the

response variable y are normally distributed about a mean that
depends on x . The statistical model for simple linear regression
states that the observed response y i when the explanatory variable
takes the value x i is y i=b0a1x ie i , y i=b0a 1x i is the mean
response when x=x i , and e i are the deviations that are assumed
to be normally distributed with mean 0 and standard deviation s ;

e i is also referred to as the random error. This is used as a basis
for the techniques that follow.

Power Test
As in the guess difference test, the power test method [3], [4] also
assumes t n can be formulated by gn =an b where

a and b are positive rationals. To find the proper a and
b , the power test applies a logarithmic transformation on each
{n ,t } pair in the observations. Secondly, it examines the
{n' ,t ' } pairs, where n '=logn , t ' =logt , to see whether

they can be fitted by a simple linear regression line.

Ladder Transformations
The power family of transformations T y =y k or T x =xk

provides a set of transformations for “straightening” a single bend
in the relationship between two variables, and is referred to as a
family of “one-bend” transformations [4], [6]. These
transformations can be used on either x or y . If the
transformations are ordered according to the exponent k , a
sequence of power transformations is given. In [5], this is called
the ladder of transformations. For example:

k=−1,−1
2

,0, 1
2

,1,2,

where the power transformation k=0 is to be interpreted as the
logarithmic transformation. In applying the idea of ladder
transformations to asymptotic analysis, the procedure is to try
several transformations of n for the {n, t } pairs in the
observations, where n corresponds to the explanatory variable x ,
t corresponds to the response variable y in the simple linear

regression model, and then choosing that transformation T i n
which make the points most nearly collinear.

4.RUNNING TIME ESTIMATORS
Based on the theoretical foundation discussed in Section 3, six
sampling-based running time estimators, namely A1, A2, A3, A4,
A5 and A6, were implemented for this study. To simplify the
description, we introduce some data abstractions. An Observation
object is defined as a data structure consisting of an {n ,T } pair,
where n is the input size, and T 〈t 1 , ... , tm 〉 , which is a vector of
running times observed from m runs, for input size n. An
Observations object is defined as a data structure that is a
collection of Observation objects. Table 4.1 shows an example
Observations object (without actual observed values). An
Estimator takes an Observations object as input to build an
estimation model that can predict the running time of a given
input size. The 'training observations' corresponds to the
Observations object that is used to build an estimation model. The
'testing observations' corresponds to the Observations object that
is used to evaluate the prediction performance of a running time
estimator.

Estimators
A1 – Power Rule with Simple Linear Regression
The A1 estimator (based on the power test) first applies a log-log
transformation on each Observation in the Observations object.
Secondly, A1 builds a simple linear regression model based on the
transformed Observations object. To predict the running time t for
a given input size n , A1 uses the simple linear regression model
to predict response variable t ' of explanatory variable n ' , where

n '=log n. Finally, A1 gives the predicted running time as
t=exp t '  .

A2 – Box-Cox Method with Simple Linear Regression
The A2 estimator (based on the Box-Cox method) works by
searching for the best simple linear regression model after
applying different transformations on the explanatory variable n –
the input size. The Box-Cox transformations are controlled by
evaluating the exponent  of n , which is defined as:

T n=n, n={ n−1

n−1
if≠0

log n  if =0

In this work, A2 applies transformations on n from the range
=0to 2.5 , where  is incremented by 0.1 in each step. There are

a total of 26 transformations. Thus, A2 builds 26 simple linear
regression models corresponding to the 26 transformations. The
'best' simple linear regression model over these transformations is
defined as the one that results in the lowest squared error. To
predict the running time t for a given input size n , A2 uses the
'best' simple linear regression model to predict the response
variable t based on the explanatory variable n ' , where
n '=T nbest .

A3/A4 – Ladder Transformations with Simple Linear
Regression
Estimator A3 applies the most commonly used power
transformations for the input size n. These transformations are
controlled by the exponent k of gn , which is defined as
T n = n k , where k is set to 0.5, 1 and 2. Like A2 (Box-Cox

estimator), A3 uses the 'best' simple linear regression model over
these transformations. Rather than using the most common ladder
transformations, A4 uses a set of ladder transformations that are
designed for predicting an algorithm's running time. Running time
functions can be ordered by growth rate, such as
logn , log2 n ,n ,n ,nlogn ,n1.1 , n1.2 , n1.3 ,... ,n1.9 ,n2.0 ,n2.1 , n2.2 ,
n2.3 ,... ,n2.9 , n3.0 .

A5/A6 – Advanced Ladder Transformations and
Multiple Regression without/with Feature Selection
A5 uses the same set of ladder transformations as A4. The
difference is that A5 uses multiple regression as the base
estimation model, which assumes the response variable depends
on not one but multiple explanatory variables. The only difference
between A6 and A5 is that A6 uses feature selection before
building the base multiple regression model.

5.EXPERIMENTAL RESULTS
This section shows the experimental results obtained using the six
estimators predicting the running time of machine learning
algorithms.

Experimental Environment
The hardware and system specifications of the computer used for
running all the experiments are:

Hardware
Processor: 32-bit Intel Pentium 4 3.00GHz
Memory: 2GB

Software
Operating system: Ubuntu Linux 8.04 (Kernel Linux 2.6.24-19-
generic)
WEKA version: 3.5.7

The average CPU usage of other system processes while running
an experiment was less than 5%.

Variance Reduction
Random noise leads to variability between runs of an algorithm
taking the same input instance and may impede the prediction
performance of sampling-based estimators. When generating
running time observations, rather than simply using the running
time of a single run to represent the running time of an algorithm
M training on a subset of data set S, the multiple runs approach is
employed to get a stable running time representative r of M
training on a subset s. There are many possible choices for r. In
this study, the sample mean and the upper/lower limit of the
estimated population mean with 95% confidence are employed.
Not only the variation of running time contributes to the random
noise, but also the method that is used to generate the subset of a
data set S. In machine learning, for classification problems, a
training set S has its own class distribution. When sampling a
subset of size k from S, a simple method randomly selects k
instances from S. If this method is employed, s does not
necessarily follow the same class distribution as S. In this study, a
more sophisticated method is used, which generates a subset s that
has the same class distribution as the full training set S. This
method is also known as stratified sampling.

Experimental Results
Due to the space limitations, we only list the main results of this
study.

Table 1. The best running time sampling treatment for each
estimator

Estimator Sampling treatment for
running time observations

Percentage of wins

A1 Upper limit of estimated
population mean with 95%
confidence

51%

A2 Upper limit of estimated
population mean with 95%
confidence

64%

A3 Upper limit of estimated
population mean with 95%
confidence

60%

A4 Lower limit of estimated
population mean with 95%
confidence

45%

A5 Lower limit of estimated
population mean with 95%
confidence

39%

A6 Upper limit of estimated
population mean with 95%
confidence

40%

Comparing Prediction Performance of a Single
Estimator Using Different Sampling Treatments

Table 1 lists the best running time sampling treatment for each
estimator. The result was obtained by running experiment over 23
WEKA machine learning algorithms in 3 different sampling
treatments and 5 sampling setups for training observations.

Comparing Prediction Performance Between
Estimators

Figure 1. Prediction performance curves of the six estimators
while the size of Observations increases

Figure 1 shows the experimental results of the prediction
performance of the six estimators over 23 WEKA machine
learning algorithms in 14 different sampling setups. Both A2
(based on Box-Cox transformations) and A4 (based on advanced
ladder transformations) win for about 23% of the total 3703 tests.
Estimator A6 wins about 22% of the 3703 tests. Note that Setup 1
to Setup 14 are ordered by the number of training Observations. It
can be seen that when the size of the training Observations is
small, for example, from Setup 1 to Setup 6, estimators A2, A4
and A6 outperform others. However, when the size of the training
Observations increases, the prediction performance of all six
estimators gets closer. Overall, A2 and A4 outperform the other
estimators.

6.CONCLUSIONS AND FUTURE WORK
Conclusions
Sampling-based running time prediction for machine learning
algorithms, by its very nature, is a function approximation
problem. From the theoretical perspective, mathematical analysis
procedures, such as the asymptotic analysis approaches discussed
in Section 3, form the fundamental ideas for sampling-based
running time prediction methods. From the practical point of
view, applying variance reduction techniques and statistical
treatments to the running time observations is necessary. The
results for the experiments presented in Section 5 show that
estimators using the 95% confidence upper/lower limit of the
estimated population mean as the training data perform better than
simply using the sample mean. All the estimators implemented in
this study use a search procedure to find appropriate
transformations and then construct regression models based on
transformed observations. The experimental results show that
estimator A2 and estimator A4 outperform the other estimators,
especially when the number of training observations is not large.

The results also show that as the number of training observations
increases, the prediction performance of all six estimators gets
closer.

Future work
There are some questions left for future research, these include:

Random noise modeling
In this study, the random noise is modeled as the random error in
linear regression models, which is assumed to be normally
distributed. However, whether the random noise in empirical
algorithm analysis follows a normal distribution is still an open
question. Therefore, one direction for future research is to
investigate whether random noise can be modeled more
accurately.

Overfitting problem in multiple regression models
Estimator A5 and A6 use multiple regression models as the base
estimation model. The model usually gives a polynomial function
that can be used to predict a future response variable. However,
the polynomial function may not be a monotonic function, thus it
might give a negative response prediction. One avenue for future
research is to apply multiple regression models that can return a
monotonic polynomial function.

Sampling setup
For practical use, ideally a running time estimator should finish its
prediction computation in a few seconds on a moderate computer
like the one used for this study. In order to achieve this goal, the
size of the sampling setup needs to be as small as possible. One
direction for future research is to investigate how to compute an
optimal sampling setup for a machine learning algorithm and its
input instance.

Prediction performance evaluation
In this study, counting the number of wins based on the smallest
absolute error is employed to evaluate estimators. One future
research direction is to use more sophisticated evaluation methods
to examine the prediction performance between estimators.

7.REFERENCES
[1] Box, G. P. and Cox, D. R. An analysis of transformations.

Journal of the Royal Statistical Society (1964), 26, 211–246.

[2] Elgot, C. C. and Robinson, A. Random-access stored-
program machines, an approach to programming languages.
J. ACM (1964), 11, 365-399.

[3] Goodrich, M. T. and Tamassia, R. Algorithm design:
Foundations, analysis, and Internet examples. Paris, John
Wiley & Sons, Inc, 2002.

[4] McGeoch, C. Using finite experiments to study asymptotic
performance. Experimental algorithmics (2002), 93-126.

[5] Mosteller, F., & Tukey, J. W. Data analysis and regression:
A second course in statistics. Reading, Mass, Addison-
Wesley, 1977.

[6] Tukey, J. W. Exploratory data analysis. Reading, Addison-
Wesley, 1977.

[7] Witten, I. H. and Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San
Francisco, 2 edition, 2005.

S
et

up
 1

S
et

up
 2

S
et

up
 3

S
et

up
 4

S
et

up
 5

S
et

up
 6

S
et

up
 7

S
et

up
 8

S
et

up
 9

S
et

up
 1

0

S
et

up
 1

1

S
et

up
 1

2

S
et

up
 1

3

S
et

up
 1

4

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

A1

A2

A3

A4
A5

A6P
er

ce
nt

ag
e

of
 w

in
s

	1.INTRODUCTION
	2.BACKGROUND
	Empirical Algorithm Analysis

	3.EMPIRICAL ASYMPTOTIC ANALYSIS
	Numerical Approaches
	Guess Ratio Test
	Guess Difference Test

	Sampling-based Approaches
	Simple Linear Regression
	Power Test
	Ladder Transformations

	4.RUNNING TIME ESTIMATORS
	Estimators
	A1 – Power Rule with Simple Linear Regression
	A2 – Box-Cox Method with Simple Linear Regression
	A3/A4 – Ladder Transformations with Simple Linear Regression
	A5/A6 – Advanced Ladder Transformations and Multiple Regression without/with Feature Selection

	5.EXPERIMENTAL RESULTS
	Experimental Environment
	Hardware
	Software

	Variance Reduction
	Experimental Results
	Comparing Prediction Performance of a Single Estimator Using Different Sampling Treatments
	Comparing Prediction Performance Between Estimators

	6.CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work
	Random noise modeling
	Overfitting problem in multiple regression models
	Sampling setup
	Prediction performance evaluation

	7.REFERENCES

