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Abstract

When working as a data analyst, one of my daily tasks is to select appropriate

tools from a set of existing data analysis techniques in my toolbox, including

data preprocessing, outlier detection, feature selection, learning algorithm and

evaluation techniques, for a given data project. This indeed was an enjoyable

job at the beginning, because to me finding patterns and valuable information

from data is always fun. Things become tricky when several projects needed

to be done in a relatively short time.

Naturally, as a computer science graduate, I started to ask myself, “What

can be automated here?”; because, intuitively, part of my work is more or less

a loop that can be programmed. Literally, the loop is “choose, run, test and

choose again... until some criterion/goals are met”.

In other words, I use my experience or knowledge about machine learning

and data mining to guide and speed up the process of selecting and applying

techniques in order to build a relatively good predictive model for a given

dataset for some purpose. So the following questions arise:

“Is it possible to design and implement a system that helps a data analyst

to choose from a set of data mining tools? Or at least that provides a useful

recommendation about tools that potentially save some time for a human

analyst.”

To answer these questions, I decided to undertake a long-term study on this

topic, to think, define, research, and simulate this problem before coding my

dream system. This thesis presents research results, including new methods,

algorithms, and theoretical and empirical analysis from two directions, both

of which try to propose systematic and efficient solutions to the questions

above, using different resource requirements, namely, the meta-learning-based

algorithm/parameter ranking approach and the meta-heuristic search-based

full-model selection approach.

Some of the results have been published in research papers; thus, this thesis

also serves as a coherent collection of results in a single volume.
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Chapter 1

Introduction

Through decades of development, machine learning has came out from its

incunabulum period, and is becoming more sound and well-defined. A rich

set of data analysis techniques, including algorithms and methods, have been

and are being developed on demand. Nowadays users of machine learning

are facing a new problem: how to choose an appropriate set of tools

for a given data mining problem in order to achieve better data

mining than simply using an arbitrary selection of tools. This thesis

presents research results from two approaches, both of which are systematic

and efficient solutions to the above question, namely the meta-learning-based

algorithm/parameter recommendation approach (the meta-learning approach)

and the meta-heuristic search-based Full Model Selection approach (the FMS

approach).

1.1 Applications

The main difference between the two approaches is due to the time required for

making a useful recommendation. A concept graph is given in Figure 1.1. The

meta-learning approach has the ability to make recommendations instantly,

e.g., within a second, but its recommendation might not be optimal for data
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Figure 1.1: The meta-learning approach and the FMS approach

characteristics that it has not seen before. By contrast, the FMS approach

does not suffer the “unknown” data characteristics issue since the candidate

models and solutions are evaluated directly on a target dataset. However, it

can be much slower than meta-learning in terms of making a recommendation,

because FMS is based on a procedure guided by some heuristics looking for a

suitable solution in a large search space. Therefore, when fast recommenda-

tion is essential, the meta-learning approach is recommended; whereas when

meta-learning’s recommendation is not good enough, the FMS is a reasonable

alternative.

Potentially, the new techniques, algorithms and methods proposed in this

thesis can be used as building blocks in a data mining recommendation engine

for a given data problem.
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1.2 Contributions

This research led to general contributions to the field of data mining and

machine learning. These include the following:

• A new meta-feature generation method for meta-learning-based algo-

rithm ranking, which simultaneously improves the predictive performances

of different meta-learners. (machine learning contribution).

• A new meta-learner called Approximate Ranking Tree Forests (ART

forests) that performs very competitively when compared with several

state-of-the-art meta-learners. We present both theoretical and empiri-

cal contributions. (machine learning contribution).

• A new experimental configuration that is more realistic than previous

configurations for applications of meta-learning. We also present a de-

fault algorithm ranking list of 20 machine-learning algorithms based on

their optimized performances over 466 datasets. (data mining contribu-

tion).

• A new ensemble learning algorithm for classification, regression and rank-

ing with extensive empirical evaluation and theoretical analysis (machine

learning contribution).

• A framework which can be used for designing new FMS (Full Model

Selection) algorithms.

• A novel FMS algorithm (called GPS), which can be seen as a realization

and an application of the proposed framework. Our experiments on real-

world problems show that the proposed algorithm performs very com-

petitively with PSMS, the state-of-the-art PSO-based FMS algorithm.

• We also examined the feasibility of using the model tree idea for speeding

up the GPS algorithm. Our experimental results suggest that using the
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perfect binary tree as the internal tree structure for GPS-based Full

Model Tree is a viable approach when the empirical training complexity

of GPS is worse than linear.

Significant parts of the research presented in this thesis have appeared in

the following publications.

• Quan Sun and Bernhard Pfahringer. Pairwise Meta-Rules for Better

Meta-learning-based Algorithm Ranking. Machine Learning, 93 (1), 141-

161, Springer US, 2013.

• Quan Sun, Bernhard Pfahringer and Michael Mayo. Towards a Frame-

work for Designing Full Model Selection and Optimization Systems. In

Proceedings of the 11th International Workshop on Multiple Classifier

Systems (MCS’13), Nanjing, China, LNCS 7872, pp. 259–270. Springer,

Heidelberg, 2013.

• Quan Sun, Bernhard Pfahringer and Michael Mayo. Full Model Selection

in the Space of Data Mining Operators. In Companion Material Proceed-

ings of the ACM Conference on Genetic and Evolutionary Computation

(GECCO’12), Philadelphia, United States, 2012.

• Quan Sun and Bernhard Pfahringer. Bagging Ensemble Selection for

Regression. In Proceedings of the 25th Australasian Joint Conference on

Artificial Intelligence (AI’12), Sydney, Australia, pages 695–706. Springer,

2012.

• Quan Sun. Full Model Selection and Optimization. In Proceedings of

the 10th New Zealand Computer Science Research Student Conference

(NZCSRSC’12), Dunedin, New Zealand, 2012.

• Quan Sun and Bernhard Pfahringer. Bagging Ensemble Selection. In
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Proceedings of the 24th Australasian Joint Conference on Artificial In-

telligence (AI’11), Perth, Australia, pages 251–260. Springer, 2011.

• Quan Sun. Getting Even More Out of Ensemble Selection. In Pro-

ceedings of the 9th New Zealand Computer Science Research Student

Conference (NZCSRSC’11), Palmerston North, New Zealand, 2011.

1.3 Thesis Outline

This thesis is organised as follows:

• Chapter 2 gives an overview of existing meta-learning and meta-heuristic

search-based full-model selection (FMS) methods and related works.

• In Chapter 3, we introduce a new meta-feature generation method and a

novel meta-learning algorithm with both theoretical and empirical anal-

ysis.

• In Chapter 4, we discuss and propose alternative ensemble learning al-

gorithms for meta-learning-based ranking problems.

• In Chapter 5 we discuss the ideas of the FMS approach. In particular, a

novel FMS algorithm (GPS) is proposed and evaluated.

• Chapter 6 concludes the thesis with additional remarks and addresses

some potentially important research directions for future work.



Chapter 2

Background

This chapter provides an introduction to the works that are related to the

techniques proposed in this thesis. In this section, we also introduce the basic

ideas of meta-learning and meta-heuristic search-based full-model selection

techniques.

2.1 Meta-learning Systems

We first list several representative contributions that are related to meta-

learning in general. The list is eclectic and by no means exhaustive. We

discuss these contributions with an emphasis on the degree of relevance to the

work presented in this thesis.

Early meta-learning systems are studied under the bias management frame-

work. In [127], the authors proposed the Variable Bias Management System

(VBMS) that dynamically alters evolving hypotheses, concept representations,

and algorithms by selecting biases based on characteristics of a particular prob-

lem. The VBMS system and a similar system called STABB [153], which stands

for “shift to a better bias”, are among the earliest machine learning approaches

to meta-learning.

Later in the signal processing community, the Hierarchical Mixtures of
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Experts (HME) architecture was proposed to employ probabilistic methods in

both the way it transfers the feature space and the way it combines expert

predictions [161]. This type of system is usually regarded as meta-learning

system because a meta-level procedure is applied to transfer the original feature

or parameter space to a “higher” level.

Another early related direction is on concept learning and its relationship

to data characteristics [126]. The idea is to view concepts as functions over

instance space, which leads to geometric characteristics such as concept size

and concentration. The authors conducted experiments to show that some

data characteristics drastically affect the accuracy of concept learning.

Early meta-learning systems were also proposed under the lifelong rein-

forcement learning framework. The success-story algorithm proposed in [76]

has been applied to complex maze tasks with a partially observable environ-

ment.

[158] discussed the term inductive transfer as a variant of meta-learning.

The idea is that by transferring knowledge across related learning tasks, a

learner can become “more experienced” and generalize better.

The Web-based Data Mining Advisor (DMA) system [64, 62, 21], is a re-

search outcome of the METAL project (ESPRIT Nr. 26.357), which is a

meta-learning system for automatically selecting learning algorithms for clas-

sification problems. The DMA system is also an attempt to apply the concept

of data envelopment analysis (a nonparametric method in operations research

and economics) [8, 4] to meta-learning. A rich set of meta-learning techniques

was proposed by researchers involved in the METAL project, including new

data characteristics (meta-features) and meta-learners [20, 141, 118, 22, 31, 23].

[13] proposed the concept of Intelligent Discovery Assistants (IDAs), which

provides users with systematic enumerations of valid DM processes. The au-

thors also illustrated a demonstration using data from the 1998 KDD CUP
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competition1. Recently, [156] proposed the concept of experiment databases.

The goal is to easily share machine learning experiments with the community,

and automatically organize them in public databases. Currently, the system

holds over 650,000 classification experiments.

2.1.1 Meta-learning Approaches

In the previous section, we have briefly reviewed several meta-learning systems

with diverse rationales and views. Indeed, meta-learning is a rich field, usually

explained as “learning to learn”. Different researchers hold different views of

exactly what the term “meta-learning” means. [158] has given a comprehensive

review on the different perspectives on meta-learning. As a summary, we here

list some of the views and approaches to meta-learning:

Meta-data based algorithm recommendation (ranking): in this ap-

proach, a meta-dataset is constructed by using various characteristics of a given

dataset collection, such as general, statistical, information-theoretic character-

istics, termed “meta-features”. Another type of meta-feature is called “land-

markers”, in which some properties (e.g., predictive performance) of a model

learnt by an algorithm are used as meta-features. Usually landmarker-based

features need to be computed relatively quickly (such as in O(nlogn) [118])

otherwise one could simply run the candidate algorithms on the dataset. Then,

the performances of the candidate algorithms are measured for each dataset in

the collection. Given a meta-dataset, another algorithm, usually called a meta-

learner, learns a model using the given meta-features. Given a new dataset,

firstly the meta-features are calculated, and the expected or relative predictive

performances of different algorithms can be predicted.

Ensemble learning can be viewed as a type of meta-learning. For ex-

ample, the stacking generalization method [164, 136, 49] works by combining

1http://www.kdd.org/kdd-cup-1998-direct-marketing-profit-optimization
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a number of base-level learning algorithms and using a meta-level learner to

learn a linear function of the models produced by the base-level algorithms.

Given a new dataset, the predictions of the base-level algorithms are combined

(e.g., weighted voting) to provide the final prediction. Boosting [134] is another

popular ensemble learning strategy in which the same base-level algorithm is

used multiple times, where in each boosting iteration, a re-weighted training

set is used. The final boosting prediction is also a combination of base-level

models. Cascade generalization [60] is also an interesting ensemble learning

strategy. The basic idea of cascade generalization is to use sequentially the

set of classifiers, at each step performing an extension of the original data

by the insertion of new attributes. The new attributes are derived from the

probability class distribution given by a base classifier. Extensive theoretical

and empirical studies have been done in the previous 20 years. Comprehensive

reviews on ensemble techniques are given in [48, 171].

Dynamic bias selection works by altering the inductive bias of a learning

algorithm to match the given problem. In this approach, the key properties

of a learning algorithm are changed, such as the kernel type of the support

vector machine algorithm, the splitting heuristic of a decision tree algorithm

or a transformation to the input feature space. There are many different

methods available in this approach. As an example, [7] described a framework

for dynamic bias selection as a case-based meta-learning system. Another type

of dynamic bias selection approach focuses on changing the representation of

the feature space [153, 73]. More examples are given in [159].

Inductive transfer uses the idea of transferring acquired knowledge from

one domain to help learning in another domain. This idea has been extensively

studied in multi-task learning [36, 11]. Applications of inductive transfer and

multi-task learning can be found in spam filtering [5] and Web search [38].
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2.1.2 Inductive Bias

It is commonly accepted in the machine learning community that each algo-

rithm has its own specific strengths and weaknesses or a restricted hypothesis

space bias [26, 111, 84]. This is due to the assumptions each algorithm makes

(based on its own inductive bias) in order to learn a model for a given dataset.

This phenomenon has also been confirmed by a series of empirical studies

[163, 137, 10, 35, 166]. In [111], the term “inductive bias” is described as the

set of all the assumptions that, together with the training data, deductively

justify the predictions that the algorithm makes for unseen instances. There

are at least four types of inductive bias, namely search bias, language bias, the

“discriminative or generative” bias and validation bias.

Search bias—Consider the ID3 [121] decision tree algorithm as shown in

Algorithm 2.1. Given a classification dataset, there are many decision trees

(hypotheses) consistent with the examples in the data. The ID3 algorithm

uses the information gain heuristic so it is biased to favour trees that place

high information gain features close to the root over those that do not. This

type of bias is usually called the preference or search bias [111].

Language bias—Assume we have a regression dataset consisting of the

following features:

• f1: the number of sales of product A

• f2: the number of sales of product B

• f3: the number of sales of product C

The target (response) variable is the number of sales of product X. If we

use the linear regression algorithm, then the learned model is a linear function

of the form:

Ĥ = w0 + w1f1 + w2f2 + w3f3,
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Algorithm 2.1 The ID3 Algorithm [121, 105]

if all examples have the same class label then

return a leaf with that class label

else if there are no features left to test then

return a leaf with the most common class label

else

Choose the feature F̂ that maximises the information gain of the set of

examples S to be the next node

Add a branch from the node for each possible value f of F̂

for each branch: do

calculate Sf by removing F̂ from the set of features

recursively call the algorithm with Sf , to compute the gain relative to

the current set of examples

end for

end if

where w0 through w3 are numerical coefficients. In this case, the decision to

use the multiple (linear) regression algorithm introduces a restriction bias or

language bias because nonlinear combinations of the features are eliminated

by the algorithm.

“Discriminative or generative” bias—Consider a simple binary clas-

sification dataset as shown in Table 2.1.2. In the discriminative approach, we

could use a rule learner to build a binary classification model. For example,

the RIPPER rule learner [42] gives us the following rules:

• If (weight ≤ 39) Then class=A

• If (weight ≥ 45) Then class=A

• Else class=B

However, in the generative approach, assuming we know the values of the
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Table 2.1: Weight (in grams) of a kiwifruit from two farms

Instances 38 40 42 39 40 44 41 37 41 42 45 46 45

Class label A B B A B B A A B B A A B

population means µA and µB, and the weight of a kiwifruit is normally dis-

tributed in both farms (and with equal variance), then we can easily obtain an

optimal Bayesian classifier [149] predicting “A” if weight ≤ µA+µB
2

, and “B”

otherwise. As pointed out in [134], when the assumptions we have made about

the data are valid, good generalization is assured. In this case, the decision to

use a certain algorithm introduces a “discriminative or generative” bias.

Validation bias—[111] notes that some algorithms combine more than

one type of bias. Therefore, end-users of machine learning are supposed to be

able to choose a proper algorithm for a given task. The selection procedure is

usually guided by an evaluation mechanism [27], e.g., cross-validation [46, 61].

However, [6] provided empirical evidence showing that the bootstrap estimator

has lower variance than cross-validation has for estimating the true accuracy

of the FOIL rule learner [122], but that it is also biased. The estimate of

accuracy provided by cross-validation has high variance but is approximately

unbiased. This implies that the choice of performance estimation method is

related to the algorithm being evaluated [84]. Thus, the decision to use a

certain performance estimation method also introduces a validation bias.

2.1.3 Theoretical Considerations

Theoretical motivations as well as some arguments on meta-learning research

are due to the No Free Lunch (NFL) theorem [165] and the Law of Conservation

for Generalization Performance (LCG) [132]. The basic idea is: “When taken

across all learning tasks, the generalization performance of any learner sums
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to 0 ”. A detailed review on NFL and LCG for meta-learning can be found in

[62]. Here, we briefly discuss the basic concepts.

For a given learning algorithm, a model M is induced, which defines a

class probability distribution p over the instances space. An Ultimate Learning

Algorithm (ULA) is a learning algorithm that induces a model M∗, such that:

∀M ′ 6= M∗ E(D(p∗, pΩ)) ≤ E(D(p′, pΩ)), (2.1)

where the expectation is computed for a given training/test set sample of the

instance space, over the entire function space, D is some appropriate distance

measure and p∗, pΩ and p′ are class probability distributions. As pointed out

in [62], here we are interested in an “ultimate” but not a “universal” algorithm

because “universal” generally means either:

1. (mathematically) applicable independent of any assumptions, or

2. applicable throughout the entire universe.

When asking about the real world (our universe) it is the second definition

that is important; what could happen in other conceivable universes is of

no possible interest to us. As pointed out in multiple research papers [63,

62]: “In our universe, we embrace the weak assumption of Machine Learning,

namely that the process that presents us with learning problems induces a non-

uniform probability distribution over the possible functions. Hence, assuming

the existence of a ULA is not in contradiction with the NFL theorem”.

2.1.4 Learning to Recommend (Rank) Algorithms

There are many other approaches in meta-learning in which the meta-data

or meta-knowledge is used to improve the performance of a learning system.

As we have mentioned in the previous sections, the term “meta-learning” has

been used by various researchers in different ways, and it is therefore dif-

ficult to give a concise definition that everyone would applaud. Our work
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in this thesis focuses on meta-learning for algorithm/parameter ranking and

related algorithms (meta-learners). Next, we discuss the general ideas of meta-

learning-based algorithm ranking and motivations.

As we have discussed in Section 2.1.2, there is no single best algorithm to be

used in all problems since most algorithms have an inductive bias, theoretically

due to the NFL theorem [165]. The brute-force approach is to try all the

algorithms (with different parameter settings) for a given dataset at hand. In

practice this is usually not feasible if there are too many alternative algorithms

available.

Consider the use case of a data analyst. One daily task of the data analyst

normally involves preparation of a dataset that can be processed by a learning

algorithm. Usually, there are several algorithms available, so the analyst needs

to select one of them for a business goal, e.g., a binary classification algorithm

for a customer churn study or a regression algorithm for online sales prediction.

Given the selected algorithm, the analyst also needs to further fine tune the

parameters in order to obtain a stable and accurate model. The choice of

algorithm and parameter is guided by the performance estimation methodology

that the analyst uses.

One common practice is to use the “trial and error (generate and test)”

strategy. Taking algorithm selection as an example, the analyst could get the

performance estimations of the algorithms based on cross-validation, and then

use statistical tests to determine the best algorithm to use. As long as the per-

formance estimation method is sound and valid, the analyst would usually get

a relatively good model for practical use. Although feasible, this strategy may

still require a reasonable amount of computing time, especially when there are

many algorithms available. Also, in a business or industrial environment, the

end-users of machine learning techniques are not necessarily machine learning

experts. Therefore, the choice of which algorithm(s) to use depends on the
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dataset at hand, and systems that can provide such recommendations would

be very useful [111, 21].

The next question is “which type of recommendation should a meta-learning

system provide to the end-user?”. In this thesis we follow the reasons and mo-

tivations described in [23, 21]: “... when searching a topic on the Web, one

may investigate several links. The same can also apply to a data analysis task

if enough resources are available to try out more than one algorithm. Since we

do not know how many algorithms the user might actually want to select, we

provide a ranking of all the algorithms...”.

In [21], the user’s goal is stated as: “saving time by reducing the number

of alternative algorithms tried out on a given problem with minimal loss in

the quality of the results obtained when compared to the best possible ones”.

Meta-learning for algorithm ranking uses a general machine learning approach

to generate meta-knowledge mapping the characteristics of a dataset, captured

by meta-features, to the relative performances of the available algorithms.

The advantage of the above approach is that high-quality algorithm or

parameter ranking can be done on the fly, e.g., in seconds. This promise

is particularly important for business domains that require rapid deployment

of analytical techniques, e.g., stock market prediction and customer response

prediction, since high-quality models need to be built every day or even every

minute.

Apart from the industrial demand, in machine learning research, meta-

learning has also been used for initializing and boosting the performance of

evolutionary-algorithm-based model selection techniques. Recent work can be

found in [124]. The work by [138] discusses cross-disciplinary perspectives on

meta-learning. Recent research seems to suggest that by making explicit the

assumptions underlying machine learning research, it is possible to show that

meta-learning offers a viable mechanism to build a “general-purpose” learning
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Figure 2.1: Meta-learning-based algorithm recommendation

algorithm [63, 62]. For a comprehensive review of meta-learning research and

its applications, we refer the reader to [158, 62, 21].

2.1.5 Instance-based Learning for Algorithm Ranking

Figure 2.1 illustrates the conceptual graph of meta-learning-based algorithm

ranking (recommendation). Next we briefly introduce a simple meta-learning

procedure which is based on the k -nearest neighbours (k -NN) ranking method.

This approach has been used in [23], where it is called the instance-based

learning (IBL) approach, since k -NN is a form of IBL.

In [23], the standard Euclidean distance function is employed to determine

the quantitative similarity between examples. Algorithm 2.2 shows the pseu-

docode for the k -NN ranking algorithm for algorithm recommendation. This

algorithm is used as a benchmark meta-learner in our meta-learning experi-

ments. We will give more details about this algorithm in Section 3.



17

Algorithm 2.2 The k -NN ranking algorithm for meta-learning-based algo-

rithm recommendation [23, 21]

1. Find the subset of k datasets containing the ones that are most “similar”

to the new dataset in terms of distances in the meta-feature space.

2. Combine the target values (e.g., accuracy measurements or ranking po-

sitions) of the k examples (datasets) to generate a prediction for a new

example.

2.1.6 Meta-features

Over the past two decades, researchers in meta-learning have designed a rich set

of meta-features. These meta-features are used to describe the characteristics

of a dataset. In this thesis, we use the term “attribute” or “base-level feature”

to refer to a feature in the original dataset. We also use the terms “data

characteristics” and “meta-features” interchangeably.

Traditionally, in terms of attributes, meta-features are clustered in the

following categories [84, 21]:

• features that describe the nature of attributes

• features that describe attributes

• features that describe relationships between attributes

• features that describe relationships between attributes and the target.

As is true in general for machine learning, the performance of meta-learning

depends crucially on the quality of the meta-features available. In terms of the

meta-features, existing meta-learning systems are mainly based on four types

of meta-features: simple, statistical, information-theoretic and landmarking-

based meta-features, or SIL for short.

• Simple—Number of instances, number of attributes, number of classes

or targets...
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• Statistical—Mean kurtosis of attributes, mean skewness of attributes...

• Information-theoretic—Class entropy, mean entropy of attributes, noise-

signal ratio [84]...

• Landmarking—Performance of a simple classifier [118], e.g., a decision

stump [81] or linear discriminant [56].

Thorough reviews and explanations of these meta-features are given in

[20, 118, 84, 140, 62, 21]. Recently, more meta-feature sets have been de-

veloped and tested, for example, the learning-curve-based meta-features [96],

tree-structure-information-based [12] and histogram-based meta-features [84].

In Section 3, we propose a novel method that generates “meta-level” meta-

features from the “base-level” meta-features via rule induction, where the

“base-level” meta-features can come from any of the meta-feature sets men-

tioned above.

Table 2.2 gives a summary of meta-features that are used as the base-level

meta-features in this thesis.

2.1.7 Parameter and Full Model Recommendation

In the previous sections, we have discussed using the meta-learning approach

for algorithm recommendation. For parameter or full model recommendation,

the idea is similar. Theoretically, given a set of data mining tools (or a set of

parameters of an algorithm) that can be used for building a predictive model

on a particular dataset, each combination of the available tools can be viewed

as a single “algorithm”.

For practical meta-learning applications, if the number of tools (algorithms)

is relatively large, then simply evaluating each combination is not feasible. For

example, if we had 10 tools, there will be 10! = 3, 628, 800 possible permuta-

tions! Although we could reduce the possible permutations by introducing
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Figure 2.2: The 80 SIL meta-features that are used as the base-level meta-

features.

some hard constraints, the space could still be large. In this situation, we

could only manually or randomly select a sample of combinations of tools and

evaluate their performances. If the sample size is still too large, then we could

use a subset (e.g., the top n best solutions) to generate a meta-learning dataset.

Another approach is to “reduce” the permutation space by defining some

templates. For example, assuming we have five tools {A, B, C, D, E}, the

total number of permutations is 5! = 120. If we know that solutions (permu-

tations) with the two objects < A ⇀ B > (applying A and then immediately
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B) are likely to yield a good model, then we could use < A ⇀ B > as a new

object reducing the space to |{AB, C, D, E}| = 4! = 24.

2.2 Meta-heuristic Search based Full Model

Selection

In Section 2.1, we discussed the meta-learning approach to algorithm and

parameter recommendation. In this section, we focus on the meta-heuristic-

search2 based full model selection (FMS) approach.

Here, the FMS problem is defined in the sense of choosing a subset of

(machine learning and data mining) tools, including preprocessing, feature

selection, learning algorithms and so on, from a set of available tools in order

to produce a good predictive model. In this approach, we assume the end-users

of the system do not require instant recommendation, i.e., for a relatively large

dataset (hundreds of thousands of instances and 20 or 30 features), making a

useful recommendation in several hours is acceptable.

Although, the computation cost of the FMS approach can be significantly

reduced using parallel computing techniques, the emphasis in the current thesis

is on the predictive performance of the solutions found by the proposed FMS

techniques.

2.2.1 Solving FMS as an Optimization Problem

In its nature, FMS is a standard optimization problem. Given g : S 7→ R, the

problem is to find:

arg min
v∈S

g(v), (2.2)

where S is a search space, g is the objective function (such as a predictive

performance estimation function) and v is a vector of decision variables (such

2Some researchers also call it meta-heuristics [102]
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as a subset of data mining and machine learning tools). When S is discrete,

FMS also belongs to the combinatorial optimization problems (COPs):

The FMS Problem

Instance: A set of data mining tools.

Task: Find a subset of the tools such that its estimated predictive

performance on a given dataset is maxima.

2.2.2 The Search Space

We define a search space that consists of all data mining actions (operators)

that are available to a given dataset for a user-specified predictive modelling

goal, such as a set of outlier filters, a set of feature selection methods, a set

of data transformation techniques and a set of base learning algorithms. This

search space is called “the space of data mining operators (DMO)”, or simply

“the DMO space”.

Figure 2.3: An illustration of the DMO space

In the DMO space, a data mining solution is abstracted as a directed

acyclic graph (DAG) consisting of DMOs that are connected based on some

relations: see Figure 2.3 for an illustration. For simplicity, in Figure 2.3 we
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consider that an optimal data mining solution is given by a DAG defined by

four DMOs (A, B, C and D) for dataset T . The DMO space is represented

by the largest oval, which consists of all DMOs applicable to T . The directed

arrows represent the relationships (action rules) in the DAG. If Operator A

is an outlier filter, Operator B is a feature reduction method, Operator C is

a decision tree algorithm, and Operator D is a post-processing method, the

DAG can be interpreted as follows: given a dataset T , in an optimal solution

we first use the outlier detection method (DMO A) to remove outliers, and

then we employ the feature selection method (DMO B) to remove useless

features, and then build a decision tree model (DMO C ), and finally, we use a

probability calibration method (DMO D) to calculate the model outputs. This

is a very large search space because in theory there exists an arbitrary number

of DMOs (including an arbitrary number of link directions, node orders and

arrangements). Therefore brute force based search will definitely fail.

2.2.3 Meta-heuristic Search Algorithms for FMS

At the concept level, meta-heuristic search employs heuristics to choose for its

actions. The heuristics lead to a solution and help to reduce the number of

alternatives. The advantages of using a heuristic search approach for problem

solving include:

• Finding a solution for an average problem efficiently.

• Finding a reasonably good, but not necessarily optimal solution effi-

ciently

Algorithm 2.3 shows the pseudocode of a simple meta-heuristic algorithm.
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Algorithm 2.3 A typical meta-heuristic search procedure [113]

Obtain an initial solution set θ0 and set k = 0.

Repeat

Identify the neighbourhood N(θk) of the current solution(s).

Select candidate solution(s) {θc} ⊂ N(θk) from the neighborhood.

Accept the candidate(s) and set θk+1 = θc or reject it and set θk+1 = θk.

Increment k = k + 1.

Until stopping criterion is satisfied

Next we briefly review two commonly used meta-heuristic search algo-

rithms.

Genetic Algorithms—Genetic algorithms (GAs) [77, 69, 110, 133, 111, 9]

have proved to be a versatile and effective approach for solving combinatorial

optimization problems. Rather than searching from the simple to the complex,

as many other solutions do, GAs generate successor hypotheses by repeated

mutation and recombination of parts of the existing best hypotheses. At each

iteration, the current population (a collection of hypotheses) is updated by

replacing certain hypotheses by offsprings of the best hypotheses. Algorithm

2.4 gives a simple version of the genetic algorithm.

In machine learning, a large number of applications of GAs can be found in

the parameter tuning [70, 69, 169, 99, 101] and the feature selection domains

[155, 154, 80, 32, 95]. GA also has a wide range of industry applications,

including bioinformatics [89, 72], computer-automated design [100], finance

and economics [106, 107], power electronics design [170], rare event analysis

[44] and many others.

In this research, GAs will be used to search optimal data mining solutions in

the DMO space, and their performance will be compared to the performance of

other heuristic search algorithms, such as particle swarm optimization (PSO)

algorithms.
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Algorithm 2.4 Basic Genetic Algorithm Steps

Generate a population of structures

Repeat

Test the structures for quality

Select structures to reproduce

Produce new variations of selected structures

Replace old structures with new ones

Until stopping criterion is satisfied

Particle Swarm Optimization (PSO) [87]—PSO is inspired by the

behaviour of biological communities that exhibit both individual and social

behavior (for example, flocks of birds and swarms of bees). Members of such

societies share common goals that are realized by interacting with their en-

vironment. In PSO, each solution is called a particle, and a set of particles

is called a swarm. In the abstract sense, particles have a velocity value that

they use for flying in the search space. Algorithm 2.5 is a simple version of

PSO. The differences between PSO and evolutionary algorithms have been

highlighted by several authors [51]. Inspired by the ideas of GAs and PSO, in

this thesis, we will attempt to propose new meta-heuristic search algorithms

for FMS.

2.2.4 Alternative Meta-heuristic Search Algorithms

In this section we briefly review several alternative meta-heuristic search algo-

rithms that could also be used for the FMS problem.

Tabu Search—Tabu search [68, 65, 67] is a local search algorithm. It uses

a neighbourhood procedure to generate an improved solution in its neighbour-

hood space, until stopping criterion has been satisfied. Tabu search keeps a

“tabu” list of solutions in memory so that the algorithm does not consider

those solutions in the list until they are sufficiently far in the past. At least
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Algorithm 2.5 Basic Particle Swarm Optimization Steps

Initialize swarm

Compute particle scores

Locate leader and set personal bests

For each particle in the swarm

Calculate velocity

Update particle position

Compute particle score

Update

Update global particle

Until a stopping criterion is satisfied

three types of memory structures have been studied for tabu search, namely,

short-term, intermediate-term and long-term [66]. Tabu Search is usually im-

plemented as a variant of steepest ascent with replacement [102].

Simulated Annealing—Simulated annealing [90, 37] gets its name from

annealing, a process of cooling molten metal. The key to the process is the

rate at which temperature decreases as the metal is cooled. This notion of

slow cooling is implemented in the simulated annealing algorithm as a slow

decrease in the chance of accepting worse solutions. The simulated annealing

algorithm is an adaptation of the Metropolis-Hastings algorithm [108]. The

basic idea of the algorithm is that if a newly generated solution is worse than

the original solution, it may still replace the original with a certain probability

controlled by a temperature parameter t (the rate of decreasing t is called the

algorithm’s schedule).

Bayesian Optimization Algorithm (BOA)—The general procedure of

the BOA algorithm is similar to a GA, but the recombination operator of the

GA is replaced by probability estimation and sampling [116, 115, 83]. First

an initial population is generated randomly. In each iteration, the algorithm
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estimates the probability distribution of a selected set of promising solutions.

A new set of solutions is then generated according to the estimate. Precisely,

BOA employs Bayesian techniques to estimate the probability distribution.

As we have discussed earlier, the FMS problem belongs to the field of

combinational optimization problems where many algorithms are available,

including the algorithms we have mentioned above. In Section 5 we will focus

on the GA and the PSO algorithms, and we leave the other algorithms for

future research.

2.2.5 Hyperparameter Selection

In this section, we review two hyperparameter selection techniques.

Grid Search—Grid search is an exhaustive approach which does not apply

any optimization during the search process. It searches through a manually

specified subset of the hyperparameter space of a learning algorithm guided by

a predictive performance estimation method, e.g., cross-validation. For con-

tinuous hyperparameters, one needs to set bounds and transfer them into a

discretized space. Grid Search has the obvious advantage that every hyperpa-

rameter vector in the grid is evaluated before the best one can be determined.

Thus if the grid is chosen appropriately, it guarantees that the best hyper-

parameter vector is close to the globally optimal parameters rather than in a

suboptimal area [103].

Online Gaussian Process—The idea of using an online Gaussian process

model for hyperparameter selection was introduced in [59]. The idea is to sam-

ple new points (a vector of hyperparameters), where the expected improvement

(given already evaluated hyperparameter vectors) is maximal, in order to find

good hyperparameters efficiently. The performance of this method and some

variants has been empirically examined in [59, 103]. In general the Gaussian

process based approach finds hyperparameters that are not significantly worse
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than those found by grid search, in much shorter time. Recently, [139] extended

the Gaussian process framework in a parallel computing environment.

The above techniques are designed for hyperparameter tuning for single

algorithms. Next, we review techniques that have been applied to FMS.

2.2.6 The PSMS system

The PSMS (particle swarm full model selection) system proposed in [51], is

an application of particle swarm optimisation (PSO) to the problem of full

model selection for classification problems. In total, 3 feature transformation

objects, 13 feature selection objects and 10 classifier objects are used in the

PSMS system. A full model is defined as a 16-dimensional particle position

[51]:

xi =< xi,pre, yi,1...Npre, xi,fs, yi,1,...Nfs
, xi,sel, xi,class, yi,1...Nclass >,

where xi,pre∈{1,...,8} represents a combination of feature transformation meth-

ods. Each combination is represented by a binary vector of size 3 (i.e., the

number of feature transformation methods considered), and there are 23 = 8

possible combinations. Each element of the binary vector represents a single

feature transformation method. Variable yi,1...Npre codifies the hyperparameters

for the selected combination of feature transformation methods, and Npre = 3

because each feature transformation method has a single hyperparameter. The

order of the feature transformation methods is fixed in the PSMS system.

xi,fs∈{0,...,12} represents the index (ID) of the feature selection method used

by the model, and yi,1...Nfs
its respective hyperparameters; Nfs is set to the

maximum number of hyperparameters that any feature selection method can

take. xi,sel is a binary variable that indicates whether feature transformation

should be performed before feature selection or vice versa. xi,class ∈ {1, ..., 10}

represents the classifier selected and yi,1,...Nclass
its respective hyperparameters.

Nclass is the the maximum number of hyperparameters that a classifier can



28

take. The above numerical codification is supposed to be decoded and used

with the chain grouping object to obtain a full model from a particle position

xi.

Based on the experimental results in [51], the PSMS system shows promis-

ing results when it is compared with the Pattern Search (PS) strategy [112, 14]

for the FMS problem. The system also shows competitive performance com-

pared with other search strategies in a model selection competition.

We have briefly introduced the PSMS system. From the system architec-

ture point of view, PSMS assumes a full model has three components: feature

transformation, feature selection, and algorithm, which is a simplified presen-

tation of a full model, because a full model may have other components, such

as data cleansing and data sampling.

In Section 5, we will introduce a novel search strategy for the FMS prob-

lem, which covers five data mining components, namely, data cleansing, data

sampling, feature transformation, feature selection and algorithm DMOs.

2.3 Model Selection and Performance Estima-

tion Methodologies

Both the meta-learning and the meta-heuristic search approaches to the FMS

problem need to estimate the predictive performance of an algorithm (or a set

of data mining tools). In this section, we review several performance estimation

methodologies that are commonly used in data mining and machine learning.

2.3.1 VC Dimension and Structural Risk Minimization

The VC (Vapnik-Chervonenkis) dimension [157] is a measure of the capacity

of a statistical classification algorithm, defined as the cardinality of the largest

set of points that the algorithm can shatter. In terms of model selection, the
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theory of VC dimension can be used to predict a probabilistic upper bound on

the test error of a classification model [157, 17].

Let d be the VC dimension of a hypothesis h, err(h) be the true error and

êrr(h) be the training error. One of the core results of VC dimension is that

with probability 1− η:

err(h) ≤ êrr(h) +

√
d(log(2N/d) + 1)− log(η/4)

N
,

where N is the number of training instances.

The above bound provides a way to estimate the true error (or error on

unseen data) based on êrr(h) and d. Although VC dimension offers a theo-

retically sound approach for estimating the true error (generalisation error) of

a model, in practice, it is not always possible to compute d. Also, there is an

implicit assumption that has to be made in order to derive the above bound,

which is N � d. The VC dimension theory based model selection framework

is called structural risk minimization (SRM), which was introduced by Vapnik.

[30] has introduced the use of SRM for support vector machine model selection.

In this thesis, we do not use the SRM framework for performance estimation

because the VC dimensions of the algorithms (or solutions consisting of a set

of tools) are not readily available.

2.3.2 Akaike and Bayesian Information Criterion

The Akaike information criterion (AIC) [1] is a measure of the relative goodness

of fit of a statistical model. The general formula is:

AIC = 2k − 2log(L),

where k is the number of parameters in a statistical model, and L is the

maximized value of the likelihood function for the estimated model. Another

closely related criterion is the Bayesian information criterion (BIC) [135] which
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penalizes the number of parameters more strongly than AIC. The formula for

the BIC is:

BIC = −2log(L) + klog(N),

where k and L are as same as in AIC, and N is the sample size.

Both AIC and BIC have been widely used for model selection in linear

regression and time series applications. As they are designed for statistical

and (exponential family) probabilistic models, they need to be combined with

maximum-likelihood estimation (MLE) approaches. However, the algorithms

(solutions) examined in this thesis are not only conventional statistical models

but also other types of models (e.g., trees, rules), which may or may not be

solvable using MLE.

2.3.3 Cross-validation

Cross-validation [46, 61, 91] is a statistical method for estimating the true error

of algorithms by dividing data into folds. One fold is used for testing, while

the remaining ones are used for training. There are several types of cross-

validation, such as k-fold cross-validation, repeated sub-sampling validation

and leave-one-out cross-validation. For example, in k-fold cross-validation, the

dataset F is partitioned into k folds, Fi, for i = 1, ..., k. Each fold is in turn left

out in training and used as a test set. The k-fold cross-validation estimate of

the true error is the overall proportion of error committed on all folds [18]. The

procedure can be repeated and scores can be averaged. Cross-validation has

been used widely in model selection [119], model/algorithm comparison [35]

and feature selection [78]. Cross-validation estimators are often pessimistic

[18], since the algorithm under testing uses smaller training sets for training.

Another drawback of cross-validation is due to its variance for small sample

sizes [19] and the computational cost.

As there is no single best true error estimation method in data mining
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and machine learning, and datasets used in this thesis are not small sample

datasets, in this thesis, cross-validation is used as the main methodology for

true error and predictive performance estimation of algorithms.

2.4 Summary

In this chapter, we gave an overview of existing meta-learning and meta-

heuristic search-based full-model selection (FMS) methods and related works.

In the next chapter, we will introduce a new meta-feature generation method

and a novel meta-learning algorithm with both theoretical and empirical anal-

ysis.



Chapter 3

Pairwise Meta-Rules and

Approximate Ranking Trees

In this chapter1, we present a novel meta-feature generation method in the

context of meta-learning, which is based on rules that compare the performance

of individual base learners in a one-against-one manner. In addition to these

new meta-features, we also introduce a new meta-learner called Approximate

Ranking Tree Forests (ART forests) that performs very competitively when

compared with several state-of-the-art meta-learners. Our experimental results

are based on a large collection of datasets and show that the proposed new

techniques can improve the overall performance of meta-learning for algorithm

ranking significantly. A key point in our approach is that each performance

figure of any base learner for any specific dataset is generated by optimising

the parameters of the base learner separately for each dataset.

This chapter makes three contributions, a novel meta-feature generator

for meta-learning, a new meta-learner, and a more appropriate experimen-

tal configuration, for improving the overall performance of meta-learning for

1Part of the research presented in this chapter has appeared in [146]: Quan Sun and Bern-

hard Pfahringer. Pairwise Meta-Rules for Better Meta-Learning-Based Algorithm Ranking.

Machine Learning, 93(1):141-161, 2013
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algorithm ranking.

3.1 Background

“Meta-learning” is a broad field; in this chapter, for simplicity, the term meta-

learning is used in the sense of “meta-learning for algorithm ranking or rec-

ommendation”. We first introduce the mechanics of meta-learning. The basic

steps of a meta-learning task are as follows. Firstly, a set of datasets is col-

lected; secondly, we need to define some meta-features as the characteristics of

each dataset, e.g., number of instances, number of numeric/categorical features

and so on (more details on meta-features are given in Section 3.2). Thirdly,

we estimate the predictive performance of the available algorithms (e.g., us-

ing cross-validation) for every dataset in the dataset collection. Thus, for each

dataset we get a list of available algorithms with their performance estimations.

Given the above information, we can construct a meta-dataset, which is a

n ×m data matrix, where m = mf + mt. Here, m is the sum of the number

of meta-features mf and the number of algorithms mt, and n is the number of

datasets. Figure 3.1 (left-hand side table) shows an example of a meta-dataset

in a general multi-target regression setting.

For algorithm recommendation, our goal is not to predict the absolute

expected performance of any algorithm, but rather the relative performance

between algorithms. Thus, the meta-dataset can be transformed to represent

the rankings of the algorithms. Figure 3.1 (from left-hand side to right-hand

side table) shows an example of how a “raw” meta-dataset is transformed.

In this case, ranking is a special case of the general multi-target regression

setting. Then, we need a meta-learner, here called a “ranker”, which takes the

n × m matrix as a training dataset to learn a ranking model. Given a new

dataset, we first calculate its meta-features and use the meta-features (e.g.,

the f1, f2, f3 values for the example in Figure 3.1) as input to the ranker. The
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Figure 3.1: Two formats of a meta-dataset constructed from three datasets

(d1, d2, d3), three meta-features (f1, f2, f3) and three algorithms (t1, t2, t3).

Left-hand side table shows the format using the actual performance values

(higher is better) as targets; the right-hand side table shows a format using

the ranks (lower is better) as targets.

ranker finally returns a ranked list of all algorithms. As is true in general for

machine learning, the performance of meta-learning depends crucially on the

quality of both the meta-features and the meta-learners available. In addition,

the performance of the base-level learners must also be estimated to a high

quality to enable successful meta-learning.

Existing meta-learning systems are mainly based on three types of meta-

features: Statistical, Information-theoretic and Landmarking-based meta-features,

or SIL for short. Thorough reviews and explanations of these meta-features

can be found in [20, 118, 84, 140]. Recently, more meta-feature sets have been

developed and tested, for example, the learning-curve-based meta-features [96],

tree-structure-information-based [12] and histogram-based meta-features [84].

In this chapter, we propose a novel method for meta-learning that generates

“meta-level” meta-features from the “base-level” meta-features via rule induc-

tion that tries to predict the better algorithm for each pair of algorithms. Here

the “base-level” meta-features can come from any of the meta-feature sets men-

tioned above. Meta-features generated by the proposed method (described in

Section 3.2) contain pairwise information between algorithms. Adding them

to the original feature space can help to improve the performance of many

meta-learners.

Next, we will discuss several ranking approaches from an algorithmic per-

spective as the underlying multi-target or ranking problem is being studied in
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various fields, including social sciences, economics and mathematical sciences.

Although the terminologies and presentations of the same models can be quite

different for different fields, the algorithmic properties are similar in concept

and relatively easy to describe.

3.1.1 The k-Nearest Neighbors Approach

The k -NN ranking approach has two steps: the nearest neighbor search step

and the ranking generation step. In the first step, given a new dataset, we

first calculate its meta-features to construct an instance as a query (an mf -

value array). Then, we select a set of instances (nearest neighbors) in the

training set (the n ×mf data matrix) that are similar to the query instance.

The similarity between instances is usually based on a distance function, e.g.,

Euclidean distance.

In the second step, we combine the rankings of the nearest neighbors to

generate an aggregated algorithm ranking for the new dataset. For our experi-

ments, we use the average ranks method described in [21]. Let Ri,j be the rank

of algorithm Tj, j = 1, ..., t on dataset i, where t is the number of algorithms.

The average rank for each algorithm Tj is defined as: R̄j = (
∑k

i=1Ri,j)/k,

where k is the number of nearest neighbors. The k -NN ranker’s performance

is related to the value of k, and appropriate values for k are usually determined

by cross-validation. The k -NN ranker is often used as a benchmark learner for

testing the performance of different meta-feature sets.

3.1.2 The Binary Pairwise Classification Approach

Given the n×m data matrix as the training data, multiple binary (pairwise)

classification models can be used to construct a ranking model. For example,

if there were three meta-features and three algorithms in the training set (e.g.,

Figure 3.1 right-hand side table), one could build three binary classification
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models for each pair of algorithms: Algorithm-1 vs. Algorithm-2, Algorithm-1

vs. Algorithm-3, and Algorithm-2 vs. Algorithm-3. The training data for

the three binary classification models are the same, which is the n×mf data

matrix. Given a new dataset, we first calculate its meta-features, again an

mf -value array as a query. Then, we use the three binary classification models

to classify the query. The final algorithm ranking list for the new dataset is

computed based on how many times each algorithm has been predicted as “is

better”. If there were more than three algorithms to rank, then there might

be ties in the list. Several tie breaking techniques have been examined in

the literature [84, 21], but usually this is not a strong performance factor for

meta-learning systems.

The advantage of the binary classification ranking approach is that existing

binary classification algorithms can be employed directly. However, if there are

many algorithms to rank, then the number of binary models required can be

large and hard to manage in practice, e.g., for 20 algorithms, this would require

T×(T−1)
2

= 20×19
2

= 190 binary classification models to be built, which could

be costly if one also considered using different (and fine tuned) classification

algorithms for each of the 190 binary classification problems. The binary

pairwise classification approach has also been studied in label ranking [79].

3.1.3 The Learning to Rank Approach

From the end-user’s perspective, algorithm ranking is similar to the ranking

problem in a search engine scenario, where a ranked list is returned for re-

sponding to a query. The search engine scenario has been extensively studied

in learning to rank and information retrieval (IR). One obvious candidate for

rank prediction is the AdaRank algorithm proposed in [167]. AdaRank is a

boosting algorithm that minimizes a loss function directly defined on the rank-

ing performance measure. The algorithm repeatedly constructs “weak rankers”
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on the basis of re-weighted training data and finally linearly combines the weak

rankers for making ranking predictions. In addition to supplying algorithms,

the IR literature is also an excellent source for ranking evaluation metrics.

Similar to search engine users, meta-learning users are usually mainly inter-

ested in the top candidates, be it websites or algorithms. An IR measure

which captures this bias towards the top ranked items well is the normalized

discounted cumulative gain (NDCG) metric [82], which has not been used in

meta-learning evaluation before.

3.1.4 The Label Ranking Approach

Label ranking can be seen as an extension of the conventional setting of classi-

fication. The former can be obtained from the latter by replacing single class

labels by complete label rankings [41, 40]. From the algorithmic view point, one

type of label ranking approaches, such as the ranking by pairwise comparison

(RPC) algorithm [79], is based on extending the pairwise binary classification

approach by using more sophisticated ranking aggregation methods. Another

type of label ranking algorithms, such the label ranking trees (LRT) algorithm

[40], tries to apply probabilistic models under the label ranking setting. Meta-

learning for algorithm ranking using the multi-target regression setting can

also be transformed to a label ranking problem, so label ranking algorithms

can be used directly.

3.1.5 The Multi-Target Regression Approach

As we can see in Figure 3.1, the algorithm ranking problem can also be seen

as a multi-target (multi-response) regression problem, where the rank position

values of each algorithm are the targets in the multi-target regression setting.

In multi-target regression, the task is to estimate several target (response)

variables using a common set of input variables (features). Two approaches
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are usually employed. One is to build separate single-target regression models

for each target variable; the other is to use a single model to estimate all

the targets simultaneously. For meta-learning, the former approach is similar

to the binary classification ranking approach but requiring fewer models to

be built, e.g., for 20 algorithms, only 20 single-target regression models are

needed. In this section, we focus on the latter approach and start from the

linear model. A linear multi-target regression model can be expressed as:

Y = XW∗ + E, (3.1)

where W∗ is the regression coefficient matrix (an n × mf matrix), X is the

data (feature value) matrix, Y is the target matrix (can be rankings) and E is

the noise term (matrix). The problem is usually formulated as a single convex

optimisation problem of the form:

minimize
W

f(W) subject to g(W) ≤ r, (3.2)

where f(W) is a loss function, e.g., squared loss, g(W) is the regularization

term, e.g., l2-norm-based, and r is a constant. Although this kind of formu-

lation is mathematically straightforward, efficient numerical techniques and

relatively easy-to-implement algorithms are not readily available for sophis-

ticated ranking-based loss/regularization functions. Also, algorithms in this

category are usually designed for relatively low-dimensional problems or it is

assumed that the number of training instances is much greater than the num-

ber of features (or the number of model parameters to estimate). In addition,

we know that the various kinds of meta-features are “logically” related, so a

nonlinear model might be more appropriate. Figure 3.2 shows two model out-

put examples from a decision tree learner and a propositional rule learner for a

binary-classification-based meta-learning problem, where only two algorithms

are considered. In this example, three types of meta-features (SIL) are used.

We can see that whether an algorithm is preferred depends on some logical re-

lationships between meta-features. For example, the second rule in Figure 3.2
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(a) A decision tree model (b) A rule model

Figure 3.2: Relationships between base-level meta-features.

(b) suggests that when there are no strong features (indicated by the “weak”

tree-based landmarkers’ AUCs being low) then SGD (WEKA implementation

of an algorithm based on stochastic gradient descent) is likely to work bet-

ter than Naive Bayes. For these reasons we leave the linear (single-model)

multi-target model approach for future research.

Here, we focus on a special class of algorithms that are based on a nonlinear

multi-target model:

Y = z(X), (3.3)

here z is a decision-tree-based function. A well-known algorithm of this kind is

called predictive clustering trees (PCT), which have been adapted for ranking

problems in [150]. There are several advantages in using decision-tree-based

rankers, including: a decision tree naturally identifies partitions of the data,

where “similar” individuals are supposed to be in the same “cluster”. This

leads to a relatively natural interpretation for the meta-learning mechanism

at the conceptual level; decision tree algorithms are reasonably fast (their

training complexity is O(nlogn), where n is the number of training instances).

In Section 3.3, we introduce a new ranker, which is an ensemble of decision-

tree-based rankers.
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3.2 Pairwise Meta-Rules

In this section, we introduce a novel meta-feature generation method in the

context of meta-learning. The main motivation comes from our observation

that existing meta-feature sets have ignored one potential source of informa-

tion: the logical pairwise relationships between each pair of the target algo-

rithms to rank. Explicitly adding this information to the meta-feature space

might improve a meta-learner’s predictive accuracy.

Of course, when predicting for a new dataset, this information will not be

available, as otherwise we would not try to predict rankings in the first place.

Therefore we propose to use a rule learner to learn pairwise rules first, and

then use these rules as new meta-features. Two steps are involved: the first

step is similar to the binary classification ranking approach, where T×(T−1)
2

(T

is the number of algorithms to rank) binary classification training datasets are

constructed from the original n×m data matrix. Each binary dataset has two

class labels: {“algorithm ti is better”, “algorithm tj is better”}. Whether an

algorithm is better than the other is determined by their ranking position in

the ranked list of a particular dataset.

Taking the dataset illustrated in the right-hand side table of Figure 3.1 as

an example, here we need to construct 3×(3−1)
2

= 3 binary datasets as shown in

Figure 3.3. Then, we build 3 rule-based binary classification models based on

the 3 binary classification meta-datasets. In principle any rule learner could be

used. We choose the RIPPER algorithm [42] here, because it is relatively fast

and its rule models are generally very compact compared to other rule learners.

Figure 3.2 (b) shows a RIPPER rule model. For each pair of algorithms, we

compute a ruleset describing in which situation an algorithm is to be preferred

over another. We call these rules the Pairwise Meta-Rules.

Next, we discuss how these rules can be used as new meta-features. Using

Figure 3.2 (b) as an example, this RIPPER ruleset comprises three rules. The
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Figure 3.3: Example datasets for learning pairwise meta-rules.

first two are individual rules, whereas the third one is a default catch-all rule.

We generate two different sets of meta-features from Pairwise Meta-Rules.

Method 1 turns each individual rule into one boolean meta-feature. For

example, we may have a Pairwise Meta-Rule:

If BaseMetaFeature-X ≤ 0.5 AND BaseMetaFeature-Y ≥ 0,

Then Algorithm A is better than Algorithm B.

The value of the new meta-feature constructed from this Meta-Rule will

be determined by looking at the (base-level) meta-feature values of a new

dataset defined by a Meta-Rule. For a new dataset, the Meta-Rule-based meta-

feature value is set to true if the rule condition “BaseMetaFeature-X ≤ 0.5

AND BaseMetaFeature-Y ≥ 0” is met, otherwise false. For the meta-learning

problem, the RIPPER algorithm returns on average about 2 individual rules

for each of the 190 algorithm pairs.

Method 2 creates just one boolean meta-feature representing the outcome

of applying the full ruleset. For a new dataset, the Meta-Rule-based meta-

feature value is set to true if the the ruleset conditions are all true, otherwise

false. For the meta-learning problem, the RIPPER algorithm returns 190

rulesets for each of the 190 algorithm pairs, so in Method 2, 190 Meta-Rule-

based meta-features are added to the original feature space.

The Pairwise Meta-Rules method is different from the standard stacking

[164] method. We do not use the predicted complete ranking of base models,

instead we use the RIPPER rule sets to construct new meta-features. A meta-

learner will use all meta-features (including both base-level and Meta-Rule-

based meta-features) for building the final model, which is also different from
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stacking.

In the experiments reported below we compare three different meta-feature

sets:

SIL-Only: 80 different SIL meta-features only;

SIL+Meta-Rules-1: the 80 SIL meta-features plus meta-features generated

by Method 1;

SIL+Meta-Rules-2: the 80 SIL meta-features plus meta-features generated

by Method 2.

Next, we propose a novel meta-learner (ranker), specifically designed for

the meta-learning-based algorithm ranking problem.

3.3 Approximate Ranking Tree Forests for

Meta-Learning

In preliminary experiments we found that the predictive performances of the

predictive clustering trees for ranking (PCTR) [150] and the label ranking trees

(LRT) [40] algorithms usually are worse than the optimised k -NN ranker for

our meta-learning problem, where the number of objects to rank is relatively

large (20 algorithms). Inspired by the bootstrap aggregating (bagging) [50? ]

strategy and the random forests framework [25], we here propose a new ranker

for the meta-learning problem, called Approximate Ranking Tree Forests (ART

Forests), which is a random forest ensemble of approximate ranking trees. The

motivations for proposing ART Forests include:

1. as more and more meta-features are being developed and added to the

feature space, we believe that a relatively fast algorithm (e.g., decision-

tree-based learners) that has “built-in” feature selection capacity would

be useful;

2. the meta-learner should not be constrained by the “number of training
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examples must be much greater than the number of parameters to esti-

mate” restriction, because for the meta-learning problem the number of

datasets is usually not very large;

3. recent theoretical work [15] seems to suggest that irrelevant features do

not significantly decrease random forest’s predictive performance, so ide-

ally the meta-learner should be capable of using as many meta-features

as possible;

4. ensemble algorithms usually outperform base algorithms. Theoretically,

statistics and models aggregated from bootstrap samples are nonpara-

metric estimates [50], so we do not have to make parametric assump-

tions about the form of the underlying population, which provides an

automatic approximation layer to our new algorithm. In the literature,

an empirical study by [85] has shown that boosting-based meta-learner

outperformed the k -NN based meta-learner in the pairwise binary clas-

sification setting (Section 3.1.2) for meta-learning.

3.3.1 Approximate Ranking Trees (ART)

In this section, we propose the ART algorithm which is used as the base

learner for ART forests. The pseudocode is given in Algorithm 3.1. ART is

a recursive partitioning algorithm that splits data into smaller sub-partitions

which are increasingly and relatively more similar in terms of a homogeneous

test (statistic) for examples in different partitions.

Next, we introduce the rationale underlying ART. We first review some ba-

sic concepts from permutation theory that will be used in this section, adopting

the notation in [104] for analysing rank data in the multi-target setting. The

basic unit of analysis consists of n datasets as judges to rank a set of m algo-

rithms (objects). The set of objects can be denoted by O = {O1, O2, ..., Om}.

For the meta-learning problem, we have a complete ranking of algorithms for
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Algorithm 3.1 Approximate Ranking Trees (ART)

Input:

D (training data, a n×m data matrix);

u (number of features to use, default log2M+1, M is the number of features)

C (splitting and stopping criterions, details are given in Sec 3.3.2 and 3.3.4)

bestSplit ← Randomly choose u features and test them based on the splitting

criterion C. Use the best feature among the u features.

if stopping criterion (e.g., n(D) = 1 or R2(DbestSplit) ≥ θ = 0.95) is met then

Return a leaf node with the corresponding leaf ranking when n(D) = 1 (or

a ranking calculated from the average rank vector when n(D) > 1).

else

// D+ and D− are two sub-partitions.

leftSubtree ← ART(D+
bestSplit, u, C)

rightSubtree ← ART(D−bestSplit, u, C)

Return (bestSplit, leftSubtree, rightSubtree)

end if

each dataset: there is a best algorithm, second best,..., and finally a worst one,

with ranks of 1, 2, ...,m, respectively. We here use Sm to denote the permuta-

tions of m ranks:

Sm ≡ {All permutations of the ranks {1, 2, ...,m}}, (3.4)

so the (multi-) target part of our meta-dataset can be expressed as a sample

of (complete) ranking vectors:

y<1>, ..., y<n> ∈ Sm. (3.5)

For example, the targets part of Figure 3.1 right-hand side table consists

of three rankings: y<1> = [2, 1, 3]′, y<2> = [2, 3, 1]′, y<3> = [3, 2, 1]′.



45

3.3.2 ART’s Splitting Criterion

The splitting criterion is a measure that quantifies the quality of a given split

point. In general, a local model is fitted into different partitions. In regression

trees, the local model is usually the mean (target) value of the examples in a

partition. This approach is fast and relatively stable, especially when regres-

sion trees are used as base models for a tree ensemble, since the mean is an

optimal estimator for i.i.d. examples. The analogy in ranking trees is that we

need to define or estimate a central ranking ẑ to be used as the local model

so that ẑ minimizes a ranking-based dispersion measure, such as the average

distance corresponding to a distance function d(., .) of ranking vectors:

d̄(z) ≡ 1

n

n∑
i=1

d(y<i>, z), z ∈ Sm. (3.6)

When n is large, given a proper distance function, the sample central ranking

could be estimated using maximum-likelihood estimation (MLE) or Bayesian

methods for certain ranking models, such as the Mallows models [104], but

these methods are usually computationally heavy, hence not suitable for en-

sembling. For ART, we use the average ranking calculated from the average

rank vector as an approximation to the central ranking of rankings in a par-

tition: ẑ = averageRanking(ȳ =
1

n

∑n
i=1 y

<i>), in terms of the Spearman’s

distance:

d(y∗, y) =
m∑
i=1

|y∗i − yi|2. (3.7)

When d is the Spearman’s distance (Eq. 3.7), based on Theorem 2.2 of

[104], the average ranking averageRanking(ȳ) is the sample central rankings,

which provides a theoretical foundation for ART.

Alternative distance functions could also be used but we will show later

(Eq. 3.11) that the Spearman’s distance has some convenient mathematical

properties. To get a feeling about what an average ranking is in our meta-

learning problem, Figure 3.5 shows an example of the average ranks of 20

algorithms over 466 datasets.
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In the ART algorithm, we use the median value of a (meta-) feature domain

as a (binary) split point to split the data D (the current partition) into two

sub-partitions D+ and D−. The best split point is determined by the one that

maximises the R2 statistic:

R2 = 1−
∑L

l=1

∑n(l)

i=1 d(y(li), ẑ(l))∑L
l=1

∑n(l)

i=1 d(y(li), ẑ(D))
, (3.8)

where L is the number of populations (partitions), and n(l) is the number of

examples in partition l. R2 is originally designed to measure the proportion

of the spread explained by the differences in the partitions (by partitioning)

[104]. There are two special cases: if the sample central rankings of different

partitions are equal, such as

ẑ(1) = ... = ẑ(L), (3.9)

then R2 = 0 implies that partitioning is not necessary; if there is only one

distinct ranking within each partition, and they are not all the same between

partitions, then R2 = 1. Here we estimate R2 and employ it as a heuristic

for ART induction. Next, we will derive an “one-step” formula for calculating

R2 without calculating the distance between the central ranking and the other

rankings in a partition.

At inner nodes, ART tests two partitions D+ and D− so we have L = 2,

and we can rewrite Eq. (3.8) to:

R2 = 1−
∑n(D+)

i=1 d(y(D+i), ẑ(D+)) +
∑n(D−)

i=1 d(y(D−i), ẑ(D−))∑n(D+)

i=1 d(y(D+i), ẑ(D)) +
∑n(D−)

i=1 d(y(D−i), ẑ(D))

= 1−
n(D+)d̄

(D+)
Spearman + n(D−)d̄

(D−)
Spearman

n(D+)d̄
(D)
Spearman + n(D−)d̄

(D)
Spearman

= 1−
n(D+)d̄

(D+)
Spearman + n(D−)d̄

(D−)
Spearman

n(D)d̄
(D)
Spearman

,

(3.10)

where D = D+ ∪D−.

For rank data the average distance is also a proper measure of spread α̂:

α̂Spearman ≡ d̄Spearman [104]. [3] and [104] present a convenient mathematical
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result with detailed derivations for Spearman’ distance (a brief derivation is

given in the next section):

α̂Spearman =
m(m+ 1)(2m+ 1)

3
− 2||ȳ||2. (3.11)

Here we replace d̄Spearman with α̂Spearman, and rewrite Eq. (3.10) to:

R2 = 1−
n(D+)α̂

(D+)
Spearman + n(D−)α̂

(D−)
Spearman

n(D+)α̂
(D)
Spearman + n(D−)α̂

(D)
Spearman

= 1−
n(D+)α̂

(D+)
Spearman + n(D−)α̂

(D−)
Spearman

n(D)α̂
(D)
Spearman

.

(3.12)

Combining everything together, we can compute R2 (Eq. 3.8) efficiently:

R2 = 1− n(D+)(h− 2||ȳ(D+)||2) + n(D−)(h− 2||ȳ(D−)||2)

n(D)(h− 2||ȳ(D)||2)
, (3.13)

where h =
m(m+ 1)(2m+ 1)

3
.

3.3.3 A Brief Derivation of Eq. 3.11

Let Qm be the set of all m×m permutation matrices, where m is the number

of objects (e.g., algorithms) to rank. The sets Sm (in Eq. 3.4) and Qm are in

one-to-one correspondence:

Q(y)em = y,Q(y) ∈ Qm, y ∈ Sm,

where e′m = [1, 2, 3, ...,m]. For example, Qij = 1 iff yi = j.

Define the Marginals matrix M̂ , an m×m matrix whose (ij)th element is:

M̂ij =
n∑
k=1

I[y
(k)
i = j],

where I[A] = 1 if event A occurs and 0 otherwise.

Let d be a Hoeffding distance of the form:

d(x, y) =
∑m

i=1 a(xi, yi)

= tr(Q(x)∆Q(y)′),
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where a(., .) is a function on {1, ...,m}×{1, ...,m} that satisfies a(i, i) = 0 and

a(i, j) = a(j, i).

For Spearman distance (which is a form of Hoeffding distance):

∆ = fm1′m + 1mf
′
m − 2eme

′
m,

where f ′m = [1, 22, 32, ...,m2] and 1′m = [1, 1, 1, ..., 1].

The spread in Eq. 3.11 is calculated as:

α̂Spearman =

∑n
i=1

∑n
j=1 d(y(i), y(j))

n2

=

∑n
i=1

∑n
j=1 tr(Qi∆Q

′
j)

n2

= tr(M̂∆M̂ ′),

where M̂1m = M̂ ′1m = 1m. Since it is well know that the sum of the

squares of integers 12 + 22 + 32 + ...+m2 =
m(m+ 1)(2m+ 1)

6
, therefore

α̂Spearman = 2(1′mfm)− 2(M̂em)′(M̂em)

=
m(m+ 1)(2m+ 1)

3
− 2||ȳ||2.

Above we give the core steps of the derivation. For more detailed about

the Marginals matrix and intermediate-step derivations, we refer the reader to

[3, 104].

3.3.4 ART’s Stopping Criterion

In order to prevent overfitting, a stopping criterion is usually used to determine

if it is worthwhile to split the current node. A natural stopping criterion can

be introduced by adding a regularization parameter θ, e.g., ART will stop

growing the current node if:

R2(bestSplit) ≥ θ, θ ∈ (0, 1], (3.14)

Another stopping criterion is the minimum number of examples at a leaf

node, γ. Setting γ to a small number usually outperform trees using larger γ
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Algorithm 3.2 Approximate Ranking Tree Forests (ART forests)

Input:

T (number of ART to use)

D (training data, a n×m data matrix);

u (number of features to use, default log2M+1, M is the total number of

features)

C (splitting and stopping criterions, details are given in Sec 3.3.2 and 3.3.4)

ARTensemble ← ∅

for i = 1 to T do

Di ← getBootstrapSample(D)

ARTi ← ART(Di, u, C)

ARTensemble ← ARTensemble ∪ ARTi

end for

Return ARTensemble

values when the tree algorithm is used as the base learner for random forests

[25]. ART uses both of these criterias to limit tree sizes.

Based on our experimental results (in the next section), we suggest using

the following default parameters for ART:

• The minimum number of instances γ at a leaf node: 1.

• The “pruning” parameter θ: 0.95.

3.3.5 ART Forests and Rank Aggregation

We use the random forests framework described in [25] for ART forests in-

duction. Algorithm 3.2 shows the pseudocode. An ART forest is grown as

follows:

1. The training set is a bootstrap sample from the original training set;
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2. An integer u is set by the user. At each node, u features are selected at

random and the node is split on the best feature among the selected u;

In prediction, as a test feature vector x is put down each tree it is assigned

the average ranking vector of the rankings at the node it stops at. The average

ranking vector of these over all approximate ranking trees in the forest is

the predicted ranking for x. Alternative rank aggregation methods, such as

other types of Borda count [125, 93], graph theory models and binary linear

program [93] might perform better (with extra computational cost), and will

be investigated in future research.

3.4 Experiment Setup and Results

This experimental comparison investigates two related questions.

• The first question concerns the new meta-feature generation method:

can it consistently improve the performance of known meta-learners?

• The second question concerns the new algorithm: are ART forests com-

petitive with current state-of-the-art rankers?

In this section, we focus on the performance of meta-learning for algorithm

ranking on binary classification datasets only. Previous studies were limited by

the small number of available datasets, usually fewer than 100 datasets were

used in reported meta-learning experiments. To be able to draw statistically

significant conclusions, we chose to use as many datasets as possible from

various public data sources, including the UCI2, StatLib3, KDD4 and WEKA5

repositories. In total slightly more than 1,000 classification and regression

2http://archive.ics.uci.edu/ml/
3http://lib.stat.cmu.edu/
4http://kdd.ics.uci.edu/
5http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.4: Some aggregated properties of the 466 datasets.

datasets were collected. However, due to the varying quality of the public

datasets, not all of them could be used directly. After removing duplications

and very small datasets (less than 10 instances), and converting multiple-class

classification (by keeping the top two majority classes) and regression (by

using the mean as a binary splitting point to transfer the numeric target to

a binary target) datasets to binary classification datasets, we finally obtained

466 datasets for experiments. Also, to speed up our experiments we reduced

relatively large datasets to a subset of 5,000 instances using random sampling.

Figure 3.4 shows some of the aggregated properties of the 466 datasets.

3.4.1 EA-Based Performance Estimation

For simplicity and in order to speed up experiments, many previous meta-

learning experiments have estimated algorithm performances using some pre-
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Figure 3.5: Sorted average ranks of the 20 algorithms over 466 datasets based

on PSO-optimised performances. This list can be transformed to a ranking,

e.g., (optimised) RandomForest is ranked 1, RotationForest 2,..., Classifica-

tionViaClustering 20. The ranking can be seen as a default ranker over the

466 datasets.

specified default parameter settings across all base-level datasets. We claim

that this approach is bound to be suboptimal in practice because to be able to

make useful predictions, most algorithms have to be optimised for each specific

dataset. Technically, predicting the full combination of algorithm plus optimal

parameter settings is not feasible.

We therefore propose an intermediate approach, where we assume that

a procedure is available for optimising each algorithm for each dataset, and

then predict the ranking of the optimised algorithms. Given a new dataset,

the recommended ranking is based on optimal parameter settings, and that

the actual parameter setting of the algorithm(s) (selected by a meta-learning

end-user) is optimised afterwards.
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Figure 3.6: WEKA algorithms and their parameter settings that are considered

in the PSO-based parameter optimization procedure.

The parameter optimization procedure used here is based on evolutionary

algorithms. Grid-search would be an alternative, but based on recent research

[124], EA-based techniques seem more efficient. Specifically, we employ the

particle swarm optimisation (PSO) based parameter selection technique de-

scribed in [51, 147, 148]. Although EA-based performance estimation is more

appropriate, it is time-consuming, especially for large datasets. Therefore,

as mentioned above, large datasets were downsampled to 5,000 instances. In
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Figure 3.7: Percentage of improvement of the best AUC performance among

20 PSO-optimised algorithms for each dataset over the same 20 algorithm

using their default parameters. Sorted by percentage of improvement over 466

datasets.

this experiment, meta-learning is used to rank 20 supervised machine learn-

ing algorithms (WEKA [74] implementations are used). When generating the

meta-dataset from the 466 datasets, for each of the 20 algorithms, we manually

choose different parameters and value ranges for PSO to optimise. Taking the

support vector machine algorithm (SMO in WEKA) as an example, we set

PSO to optimise the kernel type, all kernel parameters, and the complexity

constant. Figure 3.6 shows the details of the WEKA algorithms and their pa-

rameter settings that are considered in the PSO-based parameter optimization

procedure.

The class distributions of the 466 datasets vary a lot, with some of the

datasets being very skewed, which can cause high variance on zero-one loss

estimation. Consequently, we choose the area under the receiver operating

characteristic curve (AUC) metric as the main performance measure, as it

is less affected by class skew. We run the 20 algorithms (with PSO-based

parameter optimisation) on the 466 binary classification datasets and use 10-

fold cross-validation based AUC scores for ranking generation. Building up

this meta-dataset is the most expensive part of our meta-learning experiment:

it took roughly three weeks (about 6,000 single-core CPU hours) to complete

on two 2.8GHz 16G RAM PCs, with 6 threads running on each machine.
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Figure 3.8: Number of datasets (in % of 466) did the default parameter setting

cause one algorithm to be ranked at the respective rank value on the x-axis,

whereas the PSO-version caused a different algorithm to be ranked at the

respective rank.

Figure 3.7 shows the percentage of improvement of the best AUC score

among the 20 PSO-optimised algorithms for each dataset over the best AUC

score of the same 20 algorithms using their default parameters. The result

demonstrates the benefit of using the performances of optimised algorithms

for generating algorithm rankings. We claim this is a more appropriate exper-

imental setting for meta-learning than simply using a fixed set of parameters

for every dataset.

Figure 3.8 shows the number of datasets (in % with respect to 466) for

which the default parameter setting cause one algorithm to be ranked at the

respective rank value on the x-axis, whereas the PSO-version caused a different

algorithm to be ranked at the same rank. For instance, the bar at rank 1 means

for 78% of the 466 datasets, the default parameter setting cause one algorithm

to win over all 20 algorithms, whereas the PSO-optimised parameter setting

caused a different algorithm to win. In other words, for 100% − 78% = 22%
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Figure 3.9: Correlation coefficient for each pair of “default parameter setting

vs. PSO-optimised parameter setting” over the 466 datasets.

of the 466 datasets, the default parameter setting and the PSO-optimised

parameter setting are matched.

Figure 3.9 shows the correlation coefficient for each pair of “default param-

eter setting vs. PSO-optimised parameter setting” ranking over 466 datasets.

Higher correlation coefficient values mean that the default and the PSO-

optimised parameter settings of the respective algorithm are more consistent

in terms of correlation coefficient. This figure also reveals which algorithm

is more sensitive to parameter optimisation. Algorithms with relatively lower

scores means the model produced from their default parameter setting cannot

represent the full power of those algorithms, such as AdaBoostM1, LogitBoost,

Stacking and SMO. For those algorithms, parameter optimisation should be

done for each dataset. Algorithms with relatively high scores mean that de-

fault parameter settings usually yield good models. This includes algorithms

such as RotationForest, Bagging and SGD.
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3.4.2 Meta-Learners (Rankers) in Comparison

We test the new pairwise meta-rule based meta-features with different meta-

learners. In total 7 rankers are used for our experiments.

DefaultRanker—The default ranker follows a very simple yet powerful

philosophy: if an algorithm has worked well on previous datasets, then it is

likely to be used as the first algorithm to try on a new dataset. So, the default

ranker used in our experiments is simply using the average rank of each algo-

rithm over all the training data (meta-dataset). Thus the ranking predicted

by the default ranker is always the same for every test dataset, which is the

average ranking of the training examples. This ranker can also be seen as a

special case of an ART model with only one node. One distinguishing feature

of the algorithm ranking problem is that the (average-ranking-based) default

ranker is relatively strong compared with common preference learning prob-

lems, such as movie/book recommendation and survey data involving human

subjects.

k-NN—The k -NN ranker, as described in Section 3.1, uses standard Eu-

clidean distance and we set k = 15 (we will show later that 15 is a relatively

good value for our problem).

LRT—The label ranking trees ranker, we use the WEKA-LR6 implemen-

tation with default parameters. LRT is based on the Mallows model for rank

data.

RPC—The RPC ranker, is the ranking by pairwise comparison algorithm

proposed in [79]. We use the default setting of the RPC implementation

in WEKA-LR in which the logistic regression algorithm is used as the base

learner.

PCTR—The PCTR ranker, is the predictive clustering trees for ranking

(PCTR) ranker [150]. The minimum number of instances at a leaf node is set

6http://www.uni-marburg.de/fb12/kebi/research/software/weka-lr-page/
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to 15.

AdaRank—The AdaRank ranker uses 100 PCTR rankers as its base mod-

els and the minimum number of instances at a leaf node is set to 30 (to simu-

late a relatively weak learner as in [167]). Please note that boosting algorithms

can stop early so the final AdaRank ensemble might not have exactly 100 base

models.

ARTForests—The ARTForests ranker, we use 100 approximate ranking

trees for ART forests, and the minimum number of instances γ at a leaf node

is set to 1 for each ART (using small γ such as 1 leads to a good bagging

ensemble, which is suggested in [25] and is also confirmed by our preliminary

experiment (please see Figure 3.10); The “pruning” parameter θ is set to 0.95.

The number of random features to use is set to log2M+1, where M is the total

number of features
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3.4.3 Evaluation of Ranking Accuracy

We assess ranking accuracy by comparing the rankings predicted by a ranker

for a given dataset with the corresponding target rankings. Given two sets

of m-value rankings: T = [T1, T2, ..., Tm−1, Tm] and P = [P1, P2, ..., Pm−1, Pm],

which are targets and predictions, respectively, and letting d2
i = (Ti − Pi)2, the

following ranking evaluation metrics and functions are used in our experiments.

Spearman’s Rank Correlation Coefficient (SRCC)—SRCC is de-

fined as:

ρSRCC = 1− 6
∑m

i=1 d
2
i

m(m2 − 1)
, (3.15)

which assesses how well the relationship between the true and predicted rank-

ings can be described using a monotonic function [86].

Weighted Rank Correlation—WRC is defined as:

ρWRC = 1− 6
∑m

i=1 d
2
i ((m− Ti + 1) + (m− Pi + 1))

m4 +m3 −m2 −m
. (3.16)

The WRC metric puts more weight on the top candidates. It has been used

for meta-learning in [140, 120].

Loose Accuracy—The loose accuracy (LA@X ) measurement considers

ranking accuracy of the top X candidates only. LA@1 is also called the re-

stricted accuracy metric (count 1.0 if the top one is correct, otherwise count

0); Similarly, LA@3 means we count 1.0 if one of the predicted top three can-

didates matched the true top one, otherwise count 0. LA has been used for

meta-learning in [84]. We report results for LA@1, 3 and 5.

Normalized Discounted Cumulative Gain—Discounted cumulative

gain (DCG) is a measure of effectiveness of a search engine algorithm or re-

lated applications by using a graded relevance scale of items in a result list.

The gain is accumulated from the top of the list to the bottom with the gain

of each result discounted at lower ranks [82]. The DCG@X is defined as:

DCG@X =
∑X

i=1
2gi−1

log2(i+1)
, where gi is a grade value. The Normalized DCG at
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position X is defined as:

NDCG@X =
DCG@X

IDCG@X
, (3.17)

here IDCG is the ideal DCG at X. We report results for NDCG@1, 3 and 5.

The actual evaluation scores for the above ranking evaluation functions of

each ranker were estimated based on multiple runs of training/testing split

evaluations. We use the average scores obtained from 10 runs of 90% vs. 10%

training/testing evaluation for result visualization. For each run, 419 (90%

of 466) datasets were randomly selected for building a meta-learning system

using the corresponding ranker, and the remaining 47 datasets were used for

testing.

To avoid information leaking, we make sure that when meta-rule based

meta-features are used by a ranker, the rules are generated using only the

corresponding training meta-dataset of each run.

3.4.4 Experimental Results

We present and analyse two sets of experimental results. One is a comparison

of meta-feature sets based on k -NN performance curves; the other one is a

comparison of ranking performances of multiple rankers on two meta-feature

sets.

Figure 3.11 shows the performances of the k -NN ranker using three meta-

feature sets under different numbers of nearest neighbors (k). The perfor-

mance of the default ranker is also included. Overall, k values between 10 and

20 usually produce relatively good performance across all eight ranking met-

rics. Regarding the choice of meta-feature sets, we can see that k -NN using

the SIL+Meta-rules-1 set outperforms the SIL-only and the SIL+Meta-rules-2

meta-feature sets when appropriate k values are chosen. Taking the LA@1

metric as an example, the best k -NN performance is about 0.26, which means

that on average, if an optimal k value is used, the probability for the k -NN



61

Figure 3.11: Comparison of meta-feature sets by k -NN curves. Higher scores

are better.

ranker to predict correctly the best algorithm to use from 20 algorithms is 26%,

where the default ranker achieves about 14%, and random guessing would only

result in 1/20 = 5%. The LA@3 and LA@5 metrics behave similarly. Regard-

ing the other five metrics, they all usually outperform the baseline, albeit to

varying degrees, always clearly depending on a proper choice of the value of k.

With the second set of results, we compare different rankers on two sets of

meta-features: the SIL-only set and the SIL+Meta-rules-1 set. For simplicity,

we use SIL+Meta-rules to refer the SIL+Meta-rules-1 set. Figure 3.12 shows

the performances of the seven rankers (with and without using the meta-rules)

on the eight metrics. A “*” besides a ranker’s name means the SIL+Meta-
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rules set is significantly better than the SIL-only set (using a paired t-test

significance level of 0.05). In total, the SIL+Meta-rules set significantly wins

38 out of 48 (about 79.1%) comparison tests across all rankers (please note

that the default ranker is not counted since it does not use any meta-features).

Overall, we can see that the ART forests ranker with the SIL+Meta-rules set

consistently produces performance gains for all different metrics, and is placed

as the best ranker for 7 out of 8 metrics. Although increasing ART Forests’

ensemble size may further improve its performance, using 100 as a default

setting seems to work well for our experiments.

Table 3.1 shows a summary of the top one ranker for each metric and how

much performance gain the respective ranker can achieve. We can see that

all the best rankers used the SIL+Meta-rules set. The greatest performance

gain (93%) over the default ranker is from the k -NN ranker on the LA@1

measurement. The “Gain §” values show how much improvement the top

rankers using the SIL+Meta-rules meta-feature set can achieve over the default

ranker; and the “Gain †” values show how much improvement the Meta-Rule

method (Method 1) introduced in this chapter can achieve over the respective

best rankers using the SIL-only meta-feature set.

In terms of runtime, the RIPPER-based pairwise meta-rules method on

average takes 30 seconds to generate rulesets for 190 algorithm pairs.

Figure 3.13 shows the runtime of different rankers (exclude the runtime

for learning pairwise meta-rules). We can see that the ART Forests algorithm

(with 100 ART models) is relatively efficient compared with other state-of-the-

art rankers. When rapid modeling is required for an application, the k -NN

ranker is a reasonable alternative because it is fast and relatively accurate.



63

Figure 3.12: Comparison of meta-feature sets by ranker performances.

Figure 3.13: Single-core runtime in seconds including both training and pre-

diction stages.

3.5 Discussions

In this section, we discuss the limitations of the proposed techniques and future

work for extending and improving the system.
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Evaluation Best Ranker Used ‡ Gain § Gain †

SRCC ART Forests Yes 32.41% 1.67%

WRC ART Forests Yes 32.83% 1.77%

LA@1 k -NN Yes 93.82% 31.1%

LA@3 ART Forests Yes 21.85% 2.00%

LA@5 ART Forests Yes 33.23% 7.94%

NDCG@1 ART Forests Yes 37.60% 5.97%

NDCG@3 ART Forests Yes 27.06% 3.16%

NDCG@5 ART Forests Yes 24.50% 2.84%

Table 3.1: Summary of the top one ranker performances under different ranking

evaluation metrics and functions. Used ‡: meta-rules (SIL+Meta-Rule set)

is used, or not. Gain §: performance gain of the best ranker over the default

ranker. Gain †: performance gain of the best ranker using the SIL+Meta-Rule

set over the same ranker using the SIL-only set.

3.5.1 Limitations

For the pairwise meta-rule method, although the RIPPER algorithm works

well, we believe that alternative rule learners are still worth investigating.

An important direction for future work is to design efficient rule learners for

generating pairwise meta-rules. Because the number of pairwise rule models

required increases quadratically with the number of objects (algorithms) to

rank. Therefore, the training complexity of the chosen rule learner is critical

to the scalability of the proposed method. Let z be the average number of

rules returned by the rule learner for an algorithm pair, the total number of

pairwise meta-rule based meta-features generated for m algorithms is zm(m−1)
2

.

So we can see that when using the pairwise meta-rule method, the number

of meta-features also grows quadratically with the number of algorithms to

rank. Although this is the reason for proposing the ART forests algorithm,
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the performance and benefit of applying the pairwise meta-rule method on

the other meta-learners would be affected when the number of algorithms to

rank increases. To overcome this problem, in future work, we will investigate:

(1) rule pruning techniques for reducing the total number of pairwise meta-

rules; (2) rule set fusion techniques, such as group-wise meta-rules. Another

interesting future direction would be using the predicted rank differences (or

posterior probabilities) instead of the purely boolean pairwise meta-features,

as the actual differences could be more informative. For the ART algorithm,

in this chapter we only considered and evaluated using the median value of

a meta-feature domain as a binary split. A future work direction would be

comparing this to multi-point splitting strategies.

In this chapter, we employed the EA-based parameter selection technique,

which is a relatively expensive approach for generating meta-dataset. In the

literature, there are some attempts to use meta-learning itself to parameter

selection. [142] and [2] have shown promising results using meta-learning for

selecting the kernel type and kernel parameters for support vector machines.

There is also previous work that proposed hybrid systems that combine meta-

learning and optimisation techniques [124, 71, 43]. These systems could also be

used as alternative parameter selection procedures for the meta-learning exper-

iment setup proposed in the current research. In Section 3.4.1, we mentioned

that predicting the full combination of algorithm plus optimal parameter set-

tings is not feasible. While this is technically true, [97, 98] has introduced

the active testing based meta-learning framework that is able to return good

parameter setting together with the recommended algorithm. In their experi-

ments, a set of 292 algorithm-parameter combinations was evaluated.
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(a) ART-0’s 1-condition splitting point

(b) ART-1’s multiple-condition splitting point

Figure 3.14: 1-condition splitting vs. multiple-condition splitting

3.5.2 Single-Condition vs. Multiple-Condition Splitting

In the original ART algorithm, the median value of a meta-feature domain is

used as the splitting point for testing. For example, if the median value of

meta-feature A is 0.5, the splitting point (rule) used for splitting the current

partition is then “A ≤ 0.5”. Figure 3.14 (a) shows an example. For simplicity,

in this section, we call this algorithm ART-1c. We can see that ART-1c uses

only one condition for splitting.

In the following experiment, ART-1c is compared to a variant of ART which

uses multiple randomly generated conditions as the splitting point. Figure 3.14
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(b) shows an example. For simplicity, we call this variant—ART-mc. Next,

we describe how to generate a rule-like splitting point with multiple random

conditions.

Algorithm 3.3 Generating a multiple-condition rule-like splitting point

R← ∅

Repeat M times

Randomly choose a feature A from an “active set” of features

Randomly choose a value from the feature domain (between min(A) and

max(A))

Randomly select an operator from {≤, ≥}

Now, we have a condition c generated, e.g., A ≤ 0.5. Add c to R

return R

Let M be the number of conditions to be used in a rule-like splitting

point. Algorithm 3.3 shows the pseudocode for generating a random multiple-

condition rule-like splitting point.

ART-mc works as follows. At an inner node, ART-mc generates K random

multiple-condition rule-like splitting points, and then R2 is calculated for each

splitting point. The one with the highest R2 score is used as the final splitting

point to split the current partition into two sub-partitions. Next, we show

some experimental results.

Figure 3.15 shows a comparison between single-condition splitting (ART-

1c) and multiple-condition splitting (ART-mc) for a single tree on the meta-

learning dataset we have used in the previous sections. The y-axis values on

the 8 figures are CV-based performance measures of a single ART. Labels in

the x-axis indicate the splitting method that is used by the respective ART

variant. For example, ART-mc (1) means the respective ART variant uses 1

random condition for splitting; ART-mc (2) means the respective ART vari-

ant uses 2 random conditions for splitting. Similarly, ART-mc (6) means the
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Figure 3.15: 1-Tree; SIL-only vs. SIL+MetaRules. Higher scores are better.

Labels in the x-axis indicate the splitting method that is used by the respective

ART variant. For example, ART-mc (1) means the respective ART variant uses

1 random condition for splitting

respective ART variant uses 6 random conditions for splitting. Overall, we

can see that the meta-rule-based ART variants are more likely to achieve a

higher predictive performance compared to ART variants that did not use

meta-rules. When comparing single vs. multiple conditions for splitting, we

see that increasing the number of random conditions does not always improve

the predictive performance.

Figure 3.16 shows a similar comparison between single-condition splitting

and multiple-condition splitting for ART forests (100 ARTs). Overall, figures
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Figure 3.16: 100-tree ART Forests; SIL-only vs. SIL+MetaRules. Higher

scores are better. Labels in the x-axis indicate the splitting method that is

used by the respective ART variant. For example, ART-mc (1) means the

respective ART variant uses 1 random condition for splitting

in Figure 3.16 show that the meta-rule-based ART forests are more likely to

achieve a higher predictive performance compared to ART forests that did

not use meta-rules. When comparing using single or multiple conditions for

splitting, the pattern is similar to Figure 3.15. Again, we can see that increas-

ing the number of random conditions does not always improve the predictive

performance.

The above results show again that the meta-rule based algorithms outper-

form algorithms only use the original features (SIL-only). The results also
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indicate that using multiple random conditions for splitting do not necessar-

ily improve the predictive performance over using a median-value-based single

rule condition for splitting.

3.6 Preliminary Theoretical Analysis

In this section, we attempt to give further explanation why ART forests works

well in practice.

We first review some basic concepts that will be used, adopting the nota-

tions used in [52]. In our algorithm ranking problem we have n datasets, and

a set of m machine learning algorithms. A performance estimation methodol-

ogy is used to estimate the predictive performance of each algorithm on each

dataset in terms of a metric (e.g., AUC). Given this information, we get a full

ranking π (of m algorithms) for each dataset:

π = (π(1), ..., π(m)),

where π(i) is the rank given to algorithm i, i = 1, ...,m. Denote the set of

all m! rankings by Sm, and a right-invariant discrepancy function d(·, ·) on

Sm × Sm. Here “right-invariant” means: d(µ, π) ≥ 0, d(µ, π) = d(π, µ) iff π =

µ and d(µν, πν) = d(π, µ), for every π, µ, ν ∈ Sm.

The algorithm rankings for our dataset collection are assumed to be gen-

erated from the following model:

Pθ(π) =
exp{−θd(π, π0)}

Ψ(θ)
, π ∈ Sm, θ ∈ R, (3.18)

where π0 is a fixed ranking (central or modal ranking), and Ψ(θ) is a normal-

izing constant.

Using different distance functions, a variety of models can be derived from

the above model, for example, the Mallows’ θ model (with Spearman’s dis-

tance) and the Mallows’ φ model (with Kendall’s distance).
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The basic idea of model 3.18 is that it gives the maximum probability to

the central or modal ranking π0. The smaller the distance d(π, π0), the larger

the probability that is assigned to π.

In the ART algorithm, we use the average rank vector as π0, which turns out

to be a good choice (confirmed by our experiments in previous sections). Here,

we show that if the rankings of the meta-learning-based algorithm ranking

problem are assumed to be generated under a multistage model, namely, the

strongly unimodal model proposed in [53], the average rank vector actually is

a consistent estimator to the MLE of θ̂, which offers an alternative explanation

to the underlying mechanism of ART.

Multistage ranking models decompose a ranking generation process into

independent stages. Here we focus only on the forward model because it is

more natural to the algorithm selection procedure usually done by a data

analyst. In the forward model, given a dataset, a data analyst selects her

preferred algorithm at the first stage, the most preferred of the remaining

algorithms at the second stage, and so on until the least preferred algorithm is

selected. As described in [53], the correctness of the choice of an item at any

stage in a multistage model is assessed according to the central ranking π0.

In the algorithm ranking context, the central ranking could be an algorithm

ranking in the data analyst’s mind (based on her experiences and knowledge

or previous statistical analysis).

The following example is adapted from an example described in Section 2.1

of [53], which has been modified for the meta-learning-based algorithm ranking

problem. Assuming we have 4 algorithms:

1. logistic regression (lgr)

2. support vector machines (svm)

3. random forests (rf)
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4. a decision tree algorithm (cart)

Now, we have O = {lgr, svm, rf, cart}. For a collection of datasets, in terms

of the 10-fold CV-based AUC performance, we define π0 = (2, 3, 1, 4) as the

modal ranking. Then, in a forward model, the ranking π = (4, 3, 1, 2) means

a correct choice at the first stage (because rf is selected as the best algorithm

to use for a new dataset). An incorrect choice was made at the second stage,

since among the three remaining algorithms: 1(lgr), 2(svm), 4(cart), cart

was chosen as best although π0 indicates that lgr is the best of the three.

Finally, at the third stage, an incorrect choice is made since among the two

remaining algorithms 1(svm) and 2(lgr), algorithm svm is selected, which

disagrees with the ordering according to π0.

In the multistage model, the probability of a ranking is affected both by the

correctness of a data analyst’s choice, and how close the data analyst comes

to selecting the best of the remaining algorithms at each stage. In [53], this is

defined as:

Let Vβ = α if at stage β the (α + 1)st best of the remaining algorithms

is selected (α = 0, ...,m − β). Therefore Vβ = 0 means a correct choice at

stage β. In the example above with π0 = (2, 3, 1, 4) and π = (4, 3, 1, 2), the

values of the Vβ are V1 = 0, V2 = 2, and V3 = 1. Under the assumption of

independent choices at each stage in the ranking process, the most general

model for independent components of V = (V1, ..., Vm−1) has:

Pr(Vβ = α) = p(α, β), (3.19)

where p(α, β) ≥ 0 and
∑m−β

α=0 p(α, β) = 1. The multistage model on Sm is

defined as:

Pr(π) =
k−1∏
β=1

p(Vβ, β), π ∈ Sm. (3.20)

Here π0 can be interpreted as: when a choice has to be made between just two

algorithms, the algorithm ranked better according to π0 is preferred.
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More assumptions can be made in regard to the above model. Given the

following two:

For each β = 1, ...,m− 1, p(0, β) > p(1, β), and

p(α, β) is a nonincreasing function of α, α = 1, ...,m− β. (3.21)

Model 3.20 becomes the so called strongly unimodal model [53] because con-

ditions 3.21 imply that at each stage an algorithm with lower (better) rank

according to π0 is always at least as likely to be selected as one with a higher

rank. In the strongly unimodal model, π0 is the mode (it is the ranking that

is most likely to be sampled).

Theoretical results in [53], such as Definition 6.1, 6.2, Lemma 6.1, 6.2 and

Theorem 6.3, justify that for a random sample of n judges (datasets in the

meta-learning problem), if π̄(i) = n−1
∑
πν(i) is the average rank assigned to

item (algorithm) i, and π̄0(i) is the rank of π̄(i) among {π̄(1), ..., π̄(m)}, then

the vector π̄0 is a consistent estimator of π0. Because both π̄0 and the MLE

converge almost surely to π0, they must be converging toward each other [53].

The above theoretical analysis, together with our empirical results, provide

further explanation why ART forests works well in practice. We believe this

is also a promising direction for future work.

3.7 Conclusions

In this chapter, we have introduced a new approach for generating meta-

features to meta learning (please note that the idea of extending the set of

base-level features with outputs produced by learning algorithms has also been

studied in the context of stacking [164]. The main difference between our

method and stacking is given in Section 3.2), and we have introduced a spe-

cialised meta-learning algorithm (based on the random forests framework [25])

for predicting algorithm rankings with both theoretical and empirical analysis.
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Unlike previous work, experiments in this chapter were based on an unusual

large collection of publicly available datasets and a novel (and more appropri-

ate) meta-learning experiment configuration, which does a systematic explo-

ration of the space of parameter values of the algorithms to be ranked. Our

experimental results indicate that the pairwise meta-rule generation method

(Method 1) consistently improves the performances of different ranking ap-

proaches to meta-learning. The new ART forests ranker is always among the

top rankers across the ranking metrics and functions we have tested. The suc-

cess of the proposed methods and algorithms on the meta-learning problem

studied in this chapter suggests the applicability of the new techniques to a

wide range of meta-learning problems.



Chapter 4

Bagging Ensemble Selection for

Classification, Regression and

Ranking

In the previous chapter we have proposed a new meta-learner—ART forests,

and have examined its predictive performance under different ranking accuracy

metrics and functions.

“What about if a data analyst who had designed a special ranking accuracy

metric (function) would like to build a meta-learner optimizing that metric

directly?”

Although ART forests works well for the metrics that have been tested

in the previous section, it is not designed for optimizing a target metric di-

rectly. In this chapter1, we propose an ensemble learning strategy named

Bagging Ensemble Selection (BES), which takes a set of meta-learners (e.g.,

the ones described in the previous chapter) as the base-level learners to form

an ensemble model. The ensemble construction stage of BES is guided by a

user-specified “loss function” which provides a solution to our question.

In the first part of this section, an extensive set of experiments has been

1Part of the research presented in this chapter has appeared in [144, 145]
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conducted to study the performance of the proposed BES strategy for both

classification and regression problems. In later sections, we present results

for applying the BES strategy to meta-learning for algorithm and parameter

ranking.

4.1 BES for Classification

The problem of constructing an ensemble of classifiers from a library of base

classifiers has always been of interest to the data mining community. Usually,

compared with individual classifiers, ensemble methods are more accurate and

stable. We here reproduce the mathematical expression used in [114] to illus-

trate the idea of ensemble learning.

Let x be an instance and mi, i = 1...k, a set of base classifiers that output

probability distributions mi(x, cj) for each class label cj, j = 1...n. The output

of the final classifier ensemble y(x) for instance x can be expressed as:

y(x) = arg max
cj

k∑
i=1

wimi(x, cj), (4.1)

where wi is the weight of base classifier mi. In this particular form, ensem-

ble learning strategies can be seen as methods for calculating optimal weights

for each base classifier in terms of a classification goal. Since the mid-90’s,

many ensemble methods have been proposed. For a more detailed review of

recent developments please refer to [21, 129].

Before introducing the new methods, we briefly review bagging (bootstrap

aggregating) [24] and the ensemble selection algorithm proposed in [34]. Bag-

ging is based on the instability of base classifiers, which can be exploited to

improve the predictive performance of such unstable base classifiers. The ba-

sic idea is that, given a training set T of size n and a classifier A, bagging

generates m new training sets with replacement, Ti, each of size n′ ≤ n. Then,

bagging applies A to each Ti to build m models. The final output of bagging
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is based on simple voting [21].

Ensemble selection is a method for constructing ensembles from a library of

base classifiers [34]. Firstly, base models are built using many different machine

learning algorithms. Then a construction strategy such as forward stepwise

selection, guided by some scoring function, extracts a well performing subset

of all models. The simple forward model selection based procedure proposed

in [34] works as follows: (1) start with an empty ensemble; (2) add to the

ensemble the model in the library that maximizes the ensemble’s performance

will respect to some error metric on a hillclimb set; (3) repeat Step 2 until

all models have been examined; (4) return that subset of models that yields

maximum performance on the hillclimb set.

One advantage of ensemble selection is that it can be optimised for many

common performance metrics, or even a combination of metrics. For variants of

the ensemble selection algorithm, the reader is referred to [34, 33]. In the next

section, we will describe the proposed bagging ensemble selection algorithms

and explain the motivation of combining bagging and ensemble selection.

4.2 The Bagging Ensemble Selection Strategy

Based on the data sets and comparison results from [34], the simple forward

model selection based ensemble selection algorithm is superior to many other

well-known ensemble learning algorithms, such as stacking with linear regres-

sion at the meta-level, bagging decision trees, and boosting decision stumps.

However, sometimes ensemble selection overfits the hillclimbing set, reducing

the performance of the final ensemble.

Figure 4.1 shows the hillclimb and test set learning curves of running en-

semble selection on a data set. The red curve is the hillclimb set performance

and the blue curve is the test set performance. It demonstrates that as the

number of models in the model library increases, the performance (in terms of
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Figure 4.1: The KDD 09 customer churn data

AUC) of ensemble selection on the hillclimb set gradually increases. However,

the corresponding performance on the test set does not always increase; it may

reach a peak (local or global) and then gradually decline.

Also, as indicated in [34], for certain data sets, the root-mean-squared-

error metric sometimes can decline very quickly. To overcome this problem,

the authors of [34] proposed three additions to the simple forward selection

procedure to reduce the chance of the hillclimb set overfitting. The proposed

additions are: (1) selection with replacement, where each individual classifier

can be selected multiple times, which means some classifiers get larger weights

than others; (2) sorted ensemble initialization, where instead of starting with

an empty ensemble, models in the library are sorted by their performance, and

the best N models are put into the initial ensemble; (3) “bagged” ensemble se-

lection, where K groups (bags) of models are randomly selected from the model

library, and ensemble selection is done inside each bag; the final ensemble is

the union of the subsets selected for each of the bags. All three procedures also

introduce additional parameters to the simple ensemble selection algorithm.

Furthermore, there is one more issue: how much data should be used for



79

Figure 4.2: The waveform-5000 data

the hillclimb set? Figure 4.2 shows a typical test set learning curve for running

ensemble selection with hillclimb sets of varying sizes. Assume the training set

is F , and the hillclimb set H is a subset of F . Here, the x-axis shows the

ratio H/F and indicates the percentage of F that is used for the hillclimb

set. Based on the learning curve, we can see that the performance of ensemble

selection is not stable, and is related to how much data is used for H. In the

figure, there is a performance peak at x = 40%, but performance starts to drop

from x = 50%. Different data sets may have different optimal ratios, which

usually can be found only by using cross-validation. Therefore, this parameter

indirectly increases the complexity of ensemble selection.

Based on these observations, we propose a new ensemble learning algorithm

called Bagging Ensemble Selection (BES): if we view the simple forward en-

semble selection algorithm as an unstable base classifier, then we can apply the

bagging idea to construct an ensemble of simple ensemble selection classifiers,

which should be more robust than an individual ensemble selection classifier.

In addition, the respective out-of-bag samples can be used as the hillclimb

set. Specifically we will use the following three variations of bagging ensemble



80

Algorithm 4.1 The BES-OOB algorithm

Inputs Training set S; Ensemble Selection classifier E; Integer T (number

of bootstrap samples)

U ← ∅

for i = 1→ T do

Sb = bootstrap sample from S (i.i.d. sample with replacement)

Soob = out of bag sample

train base classifiers (can be a diverse model library) in E on Sb

Ei = do ensemble selection based on base classifiers’ performance on Soob

U = U
⋃
Ei

end for

return U

selection:

1. The BaggingES-Simple algorithm is the straightforward application of

bagging to ensemble selection, with ensemble selection being the base classifier

inside bagging. In this algorithm, the amount of data used for the hillclimb

set is still a user-specified parameter (with a default of 30%). Each bootstrap

sample is split into a train and a hillclimbing set according to this parameter.

2. The BaggingES-OOB algorithm uses the full bootstrap sample for

model generation, and the respective out-of-bag instances as the hillclimb set

for selection. The bootstrap sample is expected to contain about 1 − 1/e ≈

63.2% of the unique examples of the training set [10, 24]. Therefore the hill-

climb set (out-of-bag sample) is expected to have about 1/e ≈ 36.8% unique

examples of the training set for each bagging iteration. An advantage of

BaggingES-OOB is that the user does not need to choose the size of the hill-

climb set. Algorithm 4.1 shows the pseudocode for training the BaggingES-

OOB ensemble.

3. The BaggingES-OOB-EX algorithm is an extreme case of BaggingES-
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OOB, where in each bagging iteration only the single best classifier (in terms

of performance on the hillclimb set) is selected. Therefore, if the number of

bagging iterations is set M, then the final ensemble size will be exactly M as

well.

4.3 Experimental Results

We experiment with ten classification problems. All of them are real world

data sets which can be downloaded from the UCI repository [54], the UCSD

FICO data mining contest website2 and the KDD Cup 2009 website3. These

data sets were selected because they are large enough, and they come from

very different research and industrial areas.

Original data sets Final binary data sets

Data set with release year #Insts Atts:Classes Class distribution (#Insts)

Adult 96 48,842 14:2 23% vs 77% (10,000)

Chess 94 28,056 6:18 48% vs 52% (8,747)

Connect-4 95 67,557 42:3 26% vs 74% (10,000)

Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)

Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)

MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)

MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)

Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)

Table 4.1: Data sets: basic characteristics

Table 4.1 shows the basic properties of these data sets.

To make experiments possible for large model libraries, selecting from thou-

sands of base classifiers, all five multiclass data sets were converted to binary

problems by keeping only the two largest classes each. After this conversion to

binary problems, for data sets that are larger than 10,000 instances, a subset

of 10,000 instances is randomly selected for our experiments. Table 4.1 (in the

2The University of California, San Diego and FICO 2010 data mining contest,

http://mil.ucsd.edu/
3The KDD Cup 2009, http://www.kddcup-orange.com/
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rightmost column) shows the basic properties of the final data sets.

Ensemble selection is not restricted by the type of base classifiers used.

Theoretically, any classifier can be used as a base classifier for ensemble se-

lection. In this experiment, the WEKA [74] implementation of the random

tree classifier is used as the base classifier for all experiments. There are two

reasons for focussing solely on random trees as base classifiers. The first one is

simplicity: just by varying a single parameter, the random seed, we can obtain

a large and relatively diverse model library. The second one is fair comparison:

most other ensemble methods are limited to uniform base classifiers. To speed

up our experiments, parameter K of the random tree, the number of random

attributes, is always set to 5, and the minimum number of instances at each

leaf node is set to 50.

In [34], the authors have shown that ensemble selection can be optimised

to many common evaluation metrics. Bagging ensemble selection inherits this

very useful feature; the goal metric is therefore a user-specified parameter.

In this experiment, the AUC (area under the ROC curve) metric is used for

all experiments. The numeric value of the AUC metric is calculated as the

weighted sum across classes.

The following sections present two sets of results. One shows the results

from comparing the three bagging ensemble selection algorithms to the simple

forward ensemble selection algorithm (ES) and the ES++ algorithm, which

is the improved version of ES with the three additions, as described in the

introduction. This is followed by an analysis of the final ensemble sizes for

these algorithms. The other set of results shows a comparison between bagging

ensemble selection and other ensemble learning algorithms.
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4.3.1 Comparison to the Forward ES Algorithms

In this experiment the following setup is used: the number of bags (bagging

iterations) for BaggingES-Simple, BaggingES-OOB and BaggingES-OOB-EX

is set to 50. For each data set, we run 10 experiments per algorithm, increasing

the size of the model library per bag by 10 for each successive experiment: from

10 to 20, then to 30 and so on until 100 for the tenth experiment. That is,

when the size of the model library is 100, then, in total, 5,000 base classifiers

(random trees) are trained.

Accordingly, we run 10 experiments on each data set for the ES algorithm

and the ES++ algorithm (hillclimb ratio is set to 30% for both ES and ES++)

that we want to compare. The size of the model library increases by 500 in each

successive experiment, from a base 500 to 1,000, then 1,500 until it reaches

5,000 in the tenth experiment, which means all five algorithms in the com-

parison use the same number of base classifiers in each individual experiment.

Also, for the ES++ algorithm, the number of subgroups is set to 50.

Figure 4.3 shows the test set learning curves of the ES algorithm, the ES++

algorithm, and the three bagging ensemble selection algorithms based on 500

individual experiments (5 algorithms, 10 data sets, 10 different model library

sizes per data set). For each experiment, the algorithms are trained on 66% of

the data set and evaluated on the other 34%. We repeated each experiment five

times and the mean values were used for generating the figures and compari-

son. Based on Figure 4.3, we can see that ES and ES++ outperform bagging

ensemble selection when the size of the model library is greater than 1,000

on the Adult-96 data set. For all other nine data sets, bagging ensemble se-

lection, particularly BaggingES-OOB (blue curves) and BaggingES-OOB-EX

(green curves), clearly outperform the ES algorithm and the ES++ algorithm.

For data sets Chess-94, KDD-09 and Localization-10, BaggingES-OOB and

BaggingES-OOB-EX gave similar performance.
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(a) Adult-96 (b) Chess-94

(c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10

(g) Magic-07 (h) MiniBooNe-10

(i) Poker-07 (j) UCSD-10

Figure 4.3: Learning curves of ES, ES++ and the three bagging ensemble

selection algorithms. X-axis is the model library size; y-axis is the AUC per-

formance
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An interesting pattern is that, for data sets Connect-4-95, Magic-07 and

UCSD-10, the test performance of BaggingES-OOB-EX declines as the size

of the model library increases. This is probably due to the fact that model

diversity is more important for these data sets than for others. Thus, as the

model library gets larger and larger, the best base classifier of each of the 50

bags of BaggingES-OOB-EX might become more similar to each other, thus

losing model diversity.

For 6 out of 10 model library sizes, the BaggingES-Simple algorithm out-

performs all other algorithms on the UCSD-10 data set. The ES++ algo-

rithm outperforms other algorithms on the UCSD-10 data set when model

library sizes are 500 and 5,000, but had a relatively poor performance when

model library size is 1,000. Again, we can see that, for Covtype-98, KDD-09,

MiniBooNe-10 and UCSD-10, the learning curves of the ES algorithm are not

very stable.

Figure 4.4 (upper panel) shows the histogram presentation of the perfor-

mance in terms of the number of wins for each algorithm over the ten data

sets. We can see that BaggingES-OOB and BaggingES-OOB-EX are the top

two winners.

Next, we look at the final ensemble sizes of ES, ES++, BaggingES-OOB,

BaggingES-OOB-EX and BaggingES-Simple. Figure 4.5 shows the relation-

ship between model library size and the final ensemble size for these algorithms

on the ten data sets. Please note that the final ensemble size of BaggingES-

OOB-EX is always 50 because the number of bagging iterations is set to 50.

Except for the BaggingES-OOB-EX algorithm, we can see that the final ensem-

ble size of the other four ensemble algorithms increases linearly or sublinearly

as the size of the model library increases (note that the y-axis is logarithmic).

The final ensemble size of BaggingES-OOB, ES, and ES++ grows relatively

faster than BaggingES-Simple’s ensemble size. One possible reason is that
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Figure 4.4: Histogram presentation for counting number of wins for each algo-

rithm

in Bagging-OOB-Simple, the size of the build set (training set excluding the

hillclimb set) is relatively small compared to BaggingES-OOB. Theoretically,

for BaggingES-OOB, the hillclimb set (out-of-bag sample) has 36.8% unique

instances of the training set, and the training set has 63.2% unique instances;

however, BaggingES-Simple uses the bootstrap sample for both training and

hillclimbing. For this experiment, the hillclimb ratio for BaggingES-Simple is

set to 30%, thus its hillclimb set has fewer unique instances than BaggingES-

OOB’s hillclimb set. Therefore adding more base classifiers to BaggingES-

Simple’s model library may not necessarily improve the hillclimb performance

since the hillclimb set might be too simple and the local hillclimb performance

maximum could be achieved quickly.

Another interesting pattern is that ES has a much smaller ensemble size

than BaggingES-OOB and BaggingES-Simple have. This could be because the
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(a) Adult-96 (b) Chess-94

(c) Connect-4-95 (d) Covtype-98

(e) KDD-09 (f) Localization-10

(g) Magic-07 (h) MiniBooNe-10

(i) Poker-07 (j) UCSD-10

Figure 4.5: Final ensemble sizes of ES, ES++ and the three bagging ES based

algorithms. X-axis is the model library size; y-axis is the final ensemble size

in logarithmic scale
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local performance maximum of ES on the hillclimb set can be achieved more

quickly compared to bagging ensemble selection. Again, adding more base

classifiers to ES’s model library may not necessarily improve the hillclimb

performance.

Based on those observations, it seems that one reason for the good perfor-

mance of BaggingES-OOB is that it usually has a larger final ensemble com-

pared to all other algorithms. However, this does not imply that a larger final

ensemble always yields better predictive performance. Refer to the learning

curves in Figure 4.3, for data sets Chess-94, KDD-09 and Poker-07: BaggingES-

OOB-EX’s performance is competitive with BaggingES-OOB even though its

final ensemble size is only 50. Therefore, whenever final ensemble size is cru-

cial, for example, when an application requires fast real-time prediction, then

the BaggingES-OOB-EX algorithm should be considered.

To sum up, we conclude that the advantage of the BaggingES-OOB al-

gorithm and the BaggingES-OOB-EX algorithm over ES/ES++ is that their

ensembles are evaluated on diverse hillclimb sets generated by the bagging

procedure, and therefore are more robust and stable.

4.3.2 Comparison to Other Ensemble Algorithms

In this experiment, we compare BaggingES-OOB (the most successful variant

of the bagging ensemble selection based algorithms) to other popular ensemble

learning methods. The following algorithms (WEKA [74] implementations) are

evaluated: Voting with probability averaging, stacking with linear regression

at the meta-level (Stacking), AdaBoostM1, and RandomForest. ES++ is also

included for comparison. All ensemble algorithms use the random tree as the

base classifier. The total number of base classifiers allowed to be trained for

each ensemble algorithm is equal. For bagging ensemble selection the number

of bags is set to 50, and the number of base classifiers of individual ensemble
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selection in each bag is set to 100; thus in total 5,000 base classifiers (random

trees) are trained. For other ensemble algorithms, the number of base classifiers

is set to 5,000. The training complexity of random tree is O(nlogn), where

n is the size of the training set. In this experiment, all ensemble algorithms

train on the same number of random trees, therefore the training costs for the

model library of each ensemble algorithm in this comparison are roughly the

same.

Table 4.2 shows the performance of each algorithm on the ten data sets.

Standard deviations and significant test results were calculated from five in-

dependent runs of 66% (training) versus 34% (testing) split validation. The

results for which a significant difference with BaggingES-OOB was found, are

marked with a “*” or “◦” next to them. An asterisk “*” next to a result

indicates that BaggingES-OOB was significantly better than the respective

method (column) for the respective data set (row). A circle “◦” next to a re-

sult indicates that BaggingES-OOB was significantly worse than the respective

method. We can see that AdaBoost.M1 significantly outperforms BaggingES-

OOB on the Chess-94 and the Poker-07 data sets. On the other eight data sets,

BaggingES-OOB is competitive (7 ties) to or superior (41 significant wins) to

all other ensemble algorithms.

4.4 BES for Classification Summary

Ensemble selection is a popular ensemble learning method. Over the past sev-

eral years, ensemble selection has been empirically examined and has proven to

be a very effective and accurate ensemble learning strategy. One disadvantage

of ensemble selection is that it is unstable and sometimes overfits the hillclimb

set. In these experiments, to further improve ensemble selection we proposed

using the bagging strategy, which utilises this instability in order to reduce

the variance of a single ensemble selection. Our experiments on ten real world
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aaaaaaaaaaaa
Dataset

Algorithm

BES-OOB Voting Stacking AdaBst.M1 RandomFrst ES++

Adult-96 .905±.001 .902±.002• .892±.004• .783±.008• .902±.002• .906±.002

Chess-94 .875±.004 .859±.003• .841±.011• .971±.002◦ .862±.004• .866±.003•

Connt-4-95 .918±.006 .911±.006• .897±.007• .905±.005• .912±.006• .916±.005

Covtype-98 .884±.002 .882±.002• .875±.004• .878±.003• .882±.002• .881±.001•

KDD-09 .678±.029 .678±.027 .656±.031• .580±.011• .675±.029 .669±.029

Localiz-10 .966±.002 .957±.002• .940±.006• .938±.004• .960±.002• .963±.003•

Magic-07 .920±.004 .916±.004• .910±.004• .868±.005• .919±.004• .913±.002•

MiniB-10 .964±.002 .963±.002• .959±.002• .928±.006• .963±.002• .963±.001•

Poker-07 .697±.018 .660±.022• .620±.041• .740±.007◦ .674±.018• .671±.020•

UCSD-10 .649±.011 .648±.008 .612±.016• .632±.010• .646±.008 .646±.007•

(win/tie/loss) (0/2/8) (0/0/10) (2/0/8) (0/2/8) (0/3/7)

“•” BaggingES-OOB is significantly better, “◦” BaggingES-OOB is significantly worse, level of sign. 0.05

Table 4.2: Mean and standard deviation of the AUC performance of

BaggingES-OOB and five other popular ensemble learning methods
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problems show that the bagging ensemble selection, especially BaggingES-

OOB, which uses the out-of-bag sample as the hillclimb set, yields a robust

and more accurate classifier ensemble than the original ensemble selection.

When the underlying problem requires fast prediction, we suggest using

BaggingES-OOB-EX instead, because the user can easily control the size of

the final ensemble. In terms of predictive performance, bagging ensemble selec-

tion is also competitive (in many cases, superior) to other state-of-art ensem-

ble learning algorithms, such as voting, random forest, stacking and boosting.

Again, bagging ensemble selection is not restricted by the type of base classi-

fiers.

We experimented with only one type of base classifier in this section, but to

get the best out of the algorithm, we suggest using a more diverse model library.

The bagging ensemble selection idea can be easily generalised to regression

problems, since bagging is applicable to both classification and regression. In

the next section, we will compare bagging ensemble selection to other ensemble

methods for regression problems.

4.5 BES for Regression

In a typical regression setting, a given training set D consists of m instances,

such as D = {(x1, y1), ..., (xm, ym)}, where xi is an instance and yi is a target,

the task is to learn an approximate function f : X→ R of the true function f 0

from D. Let fj, j = 1...k, be a set of base regression learners that output pre-

dictions fj(xi). The output of a simple regression ensemble F (xi) for instance

xi can be expressed as:

F (xi) =
k∑
j=1

wjfj(xi), (4.2)

where wj is the weight of base learner fj. In this particular form, ensemble

learning strategies can be seen as methods for calculating optimal weights

for each base learner in terms of a regression goal. Since the mid-70s, many
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ensemble strategies have been proposed. We first review a few state-of-the-art

ensemble strategies for regression.

Gradient Boosting [58] is a classical ensemble learning algorithm. It pro-

duces an ensemble of base learners (e.g., decision trees) based on a stage-wise

procedure to optimise an arbitrary differentiable loss function.

Stochastic Gradient Boosting [57] is an extension of the Gradient Boosting

algorithm, where at each iteration, a base learner trains on a subset of the

training set drawn at random without replacement.

Bagging (bootstrap aggregating) [24] is based on the instability of base

learners, which can be exploited to improve the predictive performance of such

unstable base learners. The basic idea is that, given a training set T of size n

and a learner A, bagging generates m new training sets with replacement, Ti.

Then, bagging applies A to each Ti to build m models. The final output of

bagging is based on simple averaging [24]. For instance, in a regression setting

using Eq. 1, the weight wj for fj is k−1.

MultiBoosting [162] is an ensemble algorithm designed to reduce both vari-

ance and bias simultaneously, in which Boosting is used as the base learner

for Bagging. For a more detailed review of recent developments on ensemble

learning strategies please refer to [129, 117, 16, 171, 47]. Next, we discuss the

motivations for proposing and studying the bagging ensemble selection (BES)

strategy.



93

Figure 4.6: Examples of the hillclimb set overfitting problem of the Ensemble

Selection strategy on the Boston housing-price data

Figure 4.7: Examples of the hillclimb set ratio problem of the Ensemble Selec-

tion strategy on the CPU performance data

Experimental results in [34, 144] and the previous sections show that in the

classification setting, the simple ES strategy sometimes overfits the hillclimb

set, reducing its predictive performance. Our preliminary experimental results

for employing ES on regression problems also identified a similar phenomenon.

Figure 4.6 shows an example of the hillclimb set overfitting problem of ES on
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the Boston housing price data. The red curve (top) is the hillclimb set perfor-

mance; the blue curve (bottom) is the test set performance. We can see that as

the size of the model library increases, the hillclimb set performance also im-

proves gradually. However, the test set performance does not always improve.

In this case, the local optimal performance is achieved when the model library

size is about 700. Another practical issue is that users have to estimate the

optimal hillclimb set ratio for a given data set. Figure 4.7 shows an example

on the CPU data based on cross-validation based performance estimation. We

can see that the local optimal performance is achieved when the hillclimb ratio

is about 0.35; after that, the performance starts to drop. Although we could

use cross-validation to estimate the hillclimb set ratio, this would substan-

tially increase the practical training cost of ES. To overcome these problems

and improve the predictive performance of the ES strategy, three BES strate-

gies have been proposed in [144]. Experimental results show that, under the

classification setting, the BES-OOB strategy is the most successful variant in

terms of predictive performance. In this experiment, we focus on examining

the predictive performance of the BES-OOB strategy for regression problems.

4.6 BES Regression Experiments

In this section, we conduct a series of experiments and statistical tests to

examine the performance of the BES-OOB ensemble strategy for regression.
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4.6.1 Comparison to Other Ensemble Strategies

Dataset BES-OOB SGB BG BSGB

quake 0.12 0.06 • 0.12 0.12

cholesterol 0.19 0.07 • 0.18 0.19

detroit 0.22 0.03 • 0.24 0.24

breastTumor 0.22 0.16 • 0.22 0.22

meta 0.38 0.14 • 0.36 • 0.38

veteran 0.42 0.26 • 0.42 0.42

schlvote 0.45 0.10 • 0.46 0.43

sensory 0.53 0.48 • 0.53 0.52

longley 0.54 0.43 • 0.54 • 0.50 •

strike 0.55 0.41 • 0.55 0.55

kidney 0.55 0.38 • 0.53 • 0.58 ◦

baskball 0.55 0.43 • 0.55 0.56

newton-hema 0.57 0.54 0.58 ◦ 0.59 ◦

pbc 0.57 0.52 • 0.56 • 0.58 ◦

stanford 0.60 0.43 • 0.63 0.63

sleep 0.64 0.52 • 0.64 0.62

hungarian 0.65 0.63 • 0.65 • 0.66 ◦

winequality-red 0.66 0.61 • 0.66 • 0.68 ◦

echoMonths 0.67 0.69 ◦ 0.69 ◦ 0.68

winequality-white 0.68 0.62 • 0.67 • 0.70 ◦

cleveland 0.69 0.63 • 0.69 0.70 ◦

pollution 0.75 0.51 • 0.73 • 0.75

vineyard 0.76 0.67 • 0.75 • 0.76

lowbwt 0.79 0.78 • 0.79 0.79

elusage 0.82 0.81 0.82 0.84 ◦

vinnie 0.86 0.85 • 0.86 ◦ 0.86 ◦

bolts 0.86 0.83 0.83 • 0.86

gascons 0.88 0.76 • 0.84 0.83

cloud 0.91 0.84 • 0.90 • 0.91

autoMpg 0.91 0.92 0.91 • 0.93 ◦

servo 0.92 0.91 0.91 • 0.93 ◦

pwLinear 0.92 0.92 0.92 0.93 ◦

housing 0.92 0.90 • 0.91 • 0.93 ◦

boston 0.92 0.91 • 0.92 • 0.93 ◦

socmob 0.92 0.92 0.91 • 0.94 ◦

autoHorse 0.93 0.91 • 0.90 • 0.93

autoPrice 0.93 0.92 • 0.93 • 0.94 ◦

cpu 0.97 0.93 • 0.96 • 0.98

strikes 0.98 0.97 • 0.96 • 0.98 •

fishcatch 0.98 0.96 • 0.97 • 0.97 •

visualizing-galaxy 0.99 0.98 • 0.98 • 0.99 ◦

bodyfat 0.99 0.98 • 0.98 • 0.98 •

• ◦, BES-OOB is significantly better or worse

BES-OOB against

SGB BG BSGB

win/tie/loss 34/7/1 23/16/3 4/21/17

Table 4.3: Estimated correlation coefficients of BES-OOB, SGB, BG, and

BSGB; and Win/tie/loss counts of paired t-test.
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Firstly we compare BES-OOB to three state-of-the-art ensemble strategies for

regression: Stochastic Gradient Boosting (SGB) [57], standard Bagging (BG)

[24] and an ensemble of Bagging and Stochastic Gradient Boosting, denoted by

BSGB. BSGB can be seen as a variant of the MultiBoosting algorithm [162],

in which SGB is used as a base learner for Bagging. The experiments are

based on 42 regression data sets from UCI repository4 and StatLib5. We use

10 times 10-fold cross-validation to estimate the performance of each strategy.

Then, several statistical significance tests are conducted, including the non-

parametric Friedman-test and the Bonferroni-Dunn test as described in [45].

This approach utilises the ranking information of each learner in comparison,

which is suitable for comparing multiple learners on multiple data sets. The

total numbers of win, tie and loss for the paired t-test (with significance level

0.05) are also recorded. To fairly compare the four strategies, REPTree (a

CART-like regression tree) [74] is used as the base learner. The ensemble size is

set to 1,500 for all these strategies. For SGB, the shrinkage parameter is set to

0.5 and the subsample size parameter is set to 50%. For BES-OOB, the number

of base learners per “bag” is set to 30, and the number of bagging iterations

is set to 50. Also, BES-OOB is set to optimise the correlation coefficient

metric. For BSGB, the number of base learners for SGB (shrinkage is set to 0.5;

subsample size is 50%) is set to 30, and the number of bagging iterations is set

to 50. Table 4.3 presents the paired t-test results. Correlation coefficient scores

are reported. Figure 4.8 is the graphical representation of the Friedman-test

for the four strategies. We can see that both BES-OOB and BSGB significantly

outperform BG and SGB, and BG significantly outperforms SGB. There is no

significant difference between BES-OOB and BSGB’s performance over the 42

data sets.

4http://archive.ics.uci.edu/ml
5http://lib.stat.cmu.edu
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Figure 4.8: Visualization of the Friedman-test results for BES-OOS, SGB, BG,

and BSGB with REPTree as base learners over 42 data sets. The middle point

of each bar indicates the average rankings, and the bars indicate the critical

values of the Bonferroni-Dunn test (two-tailed test at significance level 0.05).

Strategies having non-overlapped bars are significantly different.

4.6.2 Diverse Model Libraries

In the previous experiments, we have been testing on a single type base learner.

However, one distinguishing feature of BES-OOB is that it can use different

types of base learners. In this section, BES-OOB with a diverse model library

consisting of three types of base learners (REPTree, SVM regression and M5P

model tree [123]), denoted by BES-diverse, is compared to BES-OOB with only

one of the three base learners, denoted by BES-reptree, BES-svm, and BES-

m5p, respectively. Three different model library sizes are tested: 3, 30 and

300. The experimental setup is as follows: the number of bagging iterations

for all BES strategies in comparison is set to 30; for BES-diverse, when the

model library size is 3, only one of each type of base learners is used; when

the model library size is 30, 10 of each type of base learners are used; so 100

of each type of the base learners are used for a model library size of 300. The

correlation coefficient is set as the goal metric for all strategies.

Diversity is one of the key factors for ensemble learning. To simplify the

procedure for generating diverse base learners, we adopt the “random sub-
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Model library size = 3

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 4/20/18 32/8/2 5/13/24

Model library size = 30

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 19/15/8 34/6/2 9/20/13

Model library size = 300

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 5/37/0 14/28/0 4/38/0

Table 4.4: Win/tie/loss counts of paired t-test for BES-OOB-diverse against

BES-OOB-reptree (A1), BES-OOB-svm (A2) and BES-OOB-m5p(A3).

space” idea [28] for each base learner in the library. That is, each base learner

trains on a random subset (33% is used for all experiments) of the original vari-

ables. For REPTree, Weka default parameters are used, and we also randomly

set its random seed; for SVM regression, we use the LibSVM default param-

eters for epsilon-SVM regression and RBF kernel, except the gamma value is

randomly set to be between 0 and 1. We use the Weka default parameters

for M5P model tree. Table 4.4 shows the paired t-test results of BES-OOB-

diverse against BES-OOB-reptree, BES-OOB-svm and BES-OOB-m5p under

three different model library sizes: 3, 30, and 300, respectively. Please note

that the number of bagging iterations is set to 30. Therefore, the numbers of

base learners that are allowed to be built for the three model library sizes are:

90, 900, and 9,000, respectively.

Figure 4.9 shows the average Friedman-test rankings of each strategy under
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Figure 4.9: Friedman average rankings under different model library sizes.

the three model library sizes. We can see that the ranking of BES-OOB-diverse

improves (from the third to the second, and finally to the first) when the model

library size increases. The result implies that the advantage of using a diverse

model library becomes clear when the model library size is relatively large.

4.6.3 Pruning an Ensemble of ES Ensembles

Until now, we have been using the standard output aggregation method for

BES-OOB. That is, the final prediction of BES-OOB is simply the average of

all individual ES learners. The final ensemble size of BES-OOB is therefore the

number of bagging iterations. In this section, we consider methods for ensemble

pruning. Usually, there are two main reasons for doing ensemble pruning. The

first is to reduce the prediction cost (e.g., runtime or memory requirements)

without sacrificing too much predictive performance. The second is to obtain

a more accurate model. Based on the theoretical work of [172] in the study

of neural networks, we know that theoretically “many could be better than

all”. This implies that the performance of an optimal subset of base learners

may outperform the population average. Since the default BES-OOB strategy

uses simple averaging, appropriate ensemble pruning may improve BES-OOB’s

performance in terms of both accuracy and prediction cost. We compare simple

averaging to two pruning methods: pruning with the cocktail ensemble (CE)
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algorithm, and pruning with the stacking strategy using the non-negative least-

squares (NNLS) algorithm as the meta-level learner. The three methods in this

comparison are denoted by BES-OOB-avg, BES-OOB-ce, and BES-OOB-nnls,

respectively. Next, we briefly introduce the BES-OOB-ce and the BES-OOB-

nnls methods.

Cocktail ensemble (CE) [168], is a novel method of ensemble learning. One

reason for using CE as an ensemble pruning method for BES-OOB is that

the authors explicitly mentioned that the method is proposed for learning

ensemble of ensembles. Since combination of multiple ensembles (equivalent

to finding the optimal weights for each base learner) is an NP-hard problem

[75], the authors of [168] proposed using the pair-wise combination for multiple

ensembles. In addition, CE has an appealing mathematical foundation, which

we will briefly discuss here. For a full account of the method, we refer readers to

[168]. The basic idea is that, given two ensembles f1 and f2, a linear ensemble

of ensembles f1 and f2 can be expressed as:

f c = pf1 + (1− p)f2, wrt p ∈ [0, 1]

where p is the weight for f1 and 1− p is the weight for f2. Then, the optimal

weight of f1 is:

p∗ =
E2 − E1

24
+ 0.5, (4.3)

where E1 and E2 are the generalization errors of f1 and f2, and 4 = Ex[(f1−

f2)2] is the squared output difference of the two ensembles. Here E1, E2 and

4 can be estimated from data (in BES-OOB, we use the out-of-bag sample).

Figure 4.10 shows the pseudocode for the CE method, which has been adapted

for BES-OOB pruning.

Stacking, or stacked generalisation [164], is a popular ensemble learning

strategy, where the weights of the base classifiers are the regression coefficients

of the meta-level regressor. Usually linear regression (LR) is used at the meta-

level. Since our goal is to prune an ensemble, simply using LR would not
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The BES-OOB-CE Algorithm

Inputs:

S is the training set

E is the Ensemble Selection (ES) learner

T is the number of bootstrap samples

1: H ← BES-OOB(S,E,T ) // an ensemble of T ES ensembles

2: fc1 ← the ensemble in H with the smallest out-of-bag

estimate of error

3: emin = +∞

4: for i← 2 to T

5: fi ← null

6: for each f ∈ H

7: e← estimated error of combing f and fci−1

8: if e < emin then fi ← f and emin ← e

9: }

10: if fi is null then fcN ← fci−1 and break

11: fci ← pif
c
i−1 + (1− pi)fi, where pi is obtained by

Eq.2 for the mean squared error

12: }

13: return fcN

Figure 4.10: Pseudocode of the CE method for BES-OOB ensemble pruning.

reduce the ensemble size. Here, we propose using stacking with the NNLS

algorithm. To the best of our knowledge, this is the first time that stacking

with NNLS is considered as an ensemble pruning approach. Eq. 4.4 shows the

basic form of the NNLS optimisation problem.

min
w≥0
‖Xw − y‖2

2. (4.4)

Here, X is the data matrix, w is the regression coefficient vector, and y is

the target matrix. We can see that it is the same as the linear least-squares

regression form, but with extra constraints on the values of the coefficient

vector. For our experiment, we use the NNLS algorithm proposed in [94].

The BES-OOB ensemble strategy constructs an ensemble of ES ensembles.

Each individual ES is trained on a corresponding bootstrap sample, and its

ensemble selection is guided by its performance on the out-of-bag sample. The
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Figure 4.11: The result of the Friedman-test over 42 data sets with two-

tailed Bonferroni-Dunn test at significance level 0.05. Strategies having non-

overlapped bars are significantly different.

basic steps of using stacking with NNLS for BES-OOB pruning are as follows:

Suppose S is the training set, and H is an ensemble of ES ensembles (same

as line 1 in Figure 4.10). A meta-dataset can be constructed by using the

predictions of each ES in H on S. The targets in S are used as the targets

of the meta-dataset. Then, we use NNLS to build a model on the meta-

dataset. The NNLS regression coefficients are used as the weights for each ES.

Therefore, the final ensemble consists only of ES ensembles with greater than

zero weight.

The experimental setup is as follows: the number of bagging iterations is

set to 30 for all three methods (BES-OOB-avg/ce/nnls). For each bagging

iteration, one REPTree-based ES learner is trained. The number of trees used

for each ES is 10. As in the previous experiment, each REPTree is built using

a random 33% of the original attributes. So in total 300 REPTree learners

are built for each of the three methods in the comparison. At the individual

bagging iteration level, all three BES-OOB methods are set to optimise the

mean squared error (MSE) metric. At the pruning level, BES-OOB-ce is also

set to optimise the MSE metric based on Eq. 2. Also, based on Eq. 5, we

know that BES-OOB-nnls optimises square error by default. In total 42 data

sets are used for this experiment.
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Data set
Root Relative Squared Error Ensemble Size Number of Trees

nnls ce avg nnls ce avg nnls ce avg

autoHorse 34.60 36.87 34.78 5.7 5.6 30 22.0 22.2 118.8

autoMpg 37.53 38.48 37.58 8.7 4.6 30 38.4 21.3 138.6

autoPrice 34.99 38.52 35.91 6.2 4.3 30 23.3 17.2 114.1

baskball 84.46 85.26 83.69 4.9 4.2 30 15.0 12.5 98.2

bodyfat 14.79 ◦ 27.53 17.13 5.3 3.4 30 13.3 9.7 75.2

bolts 31.39 36.12 35.50 5.4 4.5 30 14.7 14.4 91.0

boston 41.85 44.99 43.02 7.4 5.3 30 28.7 23.4 124.9

breastTumor 97.40 97.75 96.50 4.5 4.1 30 15.9 15.7 104.2

cholesterol 101.31 100.47 99.15 3.7 3.9 30 13.6 15.0 108.1

cleveland 74.15 75.01 73.78 5.9 4.0 30 22.0 17.0 119.0

cloud 44.80 47.19 44.09 5.6 5.3 30 20.3 19.5 109.5

cpu 19.46 ◦ 29.41 22.10 4.8 4.1 30 21.3 16.7 115.0

detroit 151.11 283.02 151.73 3.6 19.3 30 11.5 61.9 94.2

echoMonths 72.99 71.40 70.55 3.8 3.8 30 11.7 10.9 89.3

elusage 49.91 49.52 48.76 6.0 7.2 30 16.0 21.0 83.2

fishcatch 19.84 24.40 21.24 7.5 3.7 30 26.9 13.0 106.7

gascons 25.50 30.09 25.24 5.2 9.1 30 19.5 35.8 115.2

housing 41.57 45.03 43.16 7.3 5.2 30 28.5 21.2 123.7

hungarian 74.99 75.10 74.36 4.7 5.2 30 15.3 17.8 102.2

kidney 78.38 82.08 81.29 4.6 5.2 30 12.9 16.0 91.2

longley 47.35 61.70 49.97 5.0 12.5 30 16.4 39.8 102.1

lowbwt 63.02 64.00 61.62 4.4 3.9 30 13.8 11.6 92.3

meta 149.15 147.21 112.30 1.6 3.9 30 4.8 14.3 94.2

newton-hema 85.56 85.20 82.78 3.9 5.4 30 13.2 17.4 97.1

pbc 84.45 85.07 84.24 4.9 6.1 30 18.2 24.5 116.6

pollution 71.70 77.01 72.06 5.8 4.6 30 18.8 16.2 101.5

pwLinear • 48.92 55.53 53.93 5.0 3.8 30 14.0 12.9 96.8

quake 100.00 99.78 99.54 3.5 6.2 30 18.0 28.3 132.6

schlvote 84.32 ◦ 110.16 79.01 2.9 12.6 30 8.4 36.4 84.8

sensory • 84.82 86.99 86.97 5.4 5.8 30 16.7 20.7 103.7

servo 37.66 44.59 43.44 3.9 7.0 30 10.9 23.3 94.0

sleep 82.01 80.57 77.49 4.3 4.5 30 11.9 13.3 90.0

socmob • 37.24 41.23 39.81 6.5 4.4 30 19.9 15.7 100.0

stanford 92.16 95.82 88.37 4.1 6.9 30 12.6 21.8 91.7

strike 88.44 87.79 80.79 3.3 4.8 30 11.8 16.9 111.8

strikes • 0.41 8.95 4.42 1.4 10.0 30 2.9 21.9 66.0

veteran 97.46 93.98 91.51 3.3 4.3 30 10.3 13.5 94.8

vineyard 62.82 63.97 62.57 4.5 8.1 30 14.2 24.1 95.1

vinnie • 50.89 52.39 51.30 7.7 4.5 30 23.5 13.3 88.4

visualizing-galaxy 15.60 16.31 15.65 10.5 5.7 30 42.7 23.6 126.0

winequality-red 77.08 77.98 77.39 7.4 9.8 30 40.2 57.8 166.1

winequality-white 76.13 76.75 76.39 9.0 15.4 30 63.4 106.1 215.1

Average 63.53 69.79 62.65 5.2 6.2 30 19.0 23.2 106.7

(win/tie/loss); avg vs. nnls: 0/37/5; avg vs. ce: 3/39/0;

• ◦, BES-OOB-avg is significantly worse or better, respectively; at significance level 0.05

Table 4.5: The Root Relative Squared Error values, the ensemble sizes, and

the number of trees in the final ensemble for BES-OOB-avg, BES-OOB-ce and

BES-OOB-nnls, over 42 data sets.

Table 4.5 shows the corrected paired t-test results. The reported root rela-

tive squared errors are estimated from 10 times 10-fold cross-validation. The fi-
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Figure 4.12: The boxplot visualization for the final average ensemble sizes.

nal ensemble sizes, and the final number of trees, are also reported. Figure 4.11

shows the Friedman-test results. Based on the corrected paired t-test results,

we can see that both of the two pruning methods, BES-OOB-ce and BES-

OOB-nnls, show competitive predictive performance compared to BES-OOB-

avg, but with smaller final ensemble sizes and final number of trees. There are

no significant t-test-based performance differences between BES-OOB-avg and

the two pruning methods on most of the 42 data sets (39 for BES-OOB-ce;

37 for BES-OOB-nnls) in this experiment. Based on the Friedman-test and

the Bonferroni-test, we can see that the performance of BES-OOB-avg and

BES-OOB-nnls has no significant differences over the 42 data sets.

The final ensemble size for BES-OOB-avg is 30 (equal to the number of

bagging iterations). Over the 42 data sets, the average final ensemble size of

BES-OOB-ce is 6.2, corresponding to a 70% reduction in terms of ensemble

size; the average final ensemble size of BES-OOB-nnls is 5.2, corresponding to

a 83% reduction in terms of ensemble size. The average final number of trees of

BES-OOB-avg is 106.7, which is about 36% of the total 300 trees. The average

final number of trees of BES-OOB-ce is 23.2, corresponding to a 78% ((106.7 -

23.2)/106.7) reduction in terms of number of trees; the average final number of
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Figure 4.13: The boxplot visualization for the final average tree sizes.

trees of BES-OOB-nnls is 19.0, corresponding to a 82% reduction in terms of

number of trees. Figure 4.12 and Figure 4.13 show the boxplot visualization for

the ensemble sizes and the numbers of trees of BES-OOB-avg, BES-OOB-ce

and BES-OOB-nnls.

Notably, the BES-OOB-nnls method significantly outperforms the BES-

OOB-avg method on 5 data sets (about 12% of the 42 data sets). This is

a significant empirical result indicating that BES-OOB-nnls not only works

well for ensemble pruning, but also could be used for further improving the

predictive performance of the BES-OOB strategy.

Figure 4.14 shows the heatmap visualizations for the final ensembles of

BES-OOB-avg and BES-OOB-nnls on the 5 data sets where BES-OOB-nnls

is significantly better. The x-axis and the y-axis are the indices of 30 base

ES learners, sorted by out-of-bag error (lower index means lower oob error).

There are in total 30 × 30 = 900 pixels (cells) per image. The colour of each

cell is determined by the pair-wise correlation score (normalised) between the

predictions of the ES at x and the predictions of the ES at y. A cell with

the same index on both x and y will have a score of 1.0, and is in white. For

the right hand side panels, a cell in green means the corresponding ES has
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(a) pwLinear, avg (b) pwLinear, nnls

(c) sensory, avg (d) sensory, nnls

(e) socmob, avg (f) socmob, nnls

(g) strikes, avg (h) strikes, nnls

(i) vinnie, avg (j) vinnie, nnls

Figure 4.14: The heatmap visualizations for the final ensembles of BES-OOB-

avg (left panel) and BES-OOB-nnls (right panel) on the 5 data sets where

BES-OOB-nnls is significantly better.
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been pruned. BES-OOB-avg and BES-OOB-nnls are trained on 90% of each

data set, and the correlation scores are based on predictions of individual ES

learners on the remaining 10% of each data set.

From the image processing point of view, we can see that BES-OOB-nnls

works by finding a reduced image for BES-OOB-avg, which maintains the

general pattern of the original image. Or it could be also thought of as BES-

OOB-nnls removes noise cells from the original image. In this sense, the noise

cells are the base ES learners that were determined as not contributing to

improving performance. Interestingly, on the strikes data set, we can see that

most ES learners in the BES-OOB-avg ensemble are very similar to each other

(pair-wise correlation scores are high), so the BES-OOB-nnls pruning method

could reduce the image to a single point. This makes sense because in an

extreme case, in which all ES learners are the same, then the ensemble average

should be the same as a single ES learner. Also, we can see that, on the vinnie

data set, the BES-OOB-nnls method tends to keep the pattern for cells with

relatively high diversity in the original image (please see the cells for x = 28 or

y = 28). This partially explains the good performance of the BES-OOB-nnls

method.

4.7 BES Regression Summary

Bagging ensemble selection using the out-of-bag sample for hillclimbing (BES-

OOB), is a new ensemble learning strategy. In this section, we studied the

predictive performance of BES-OOB in the regression setting. The main con-

tributions of this section are:

• Previous studies focused on using BES-OOB for classification problems

only. In the above experiment, through a series of experiments and statis-

tical tests, we have shown that, in the regression setting, the BES-OOB

strategy is competitive to MultiBoosting, and is superior to Bagging and
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Stochastic Gradient Boosting when using CART-like regression trees as

the base learners.

• We have shown that using a diverse model library could further boost

BES-OOB’s predictive performance when the model library size is rela-

tively large.

• Our results also have shown that both the cocktail ensemble and the

stacking with NNLS methods work well for BES-OOB ensemble pruning.

Particularly, the latter method can be also used to improve the predictive

performance of the BES-OOB strategy.

One reason for the good predictive performance of the BES-OOB strategy is

that it can optimise a user-specified error metric directly in the base learner

selection stage. Out-of-bag samples seem to work well for ES’s ensemble se-

lection in practice. Another notable feature of BES-OOB is its simplicity and

ease of implementation.

The success of the BES-OOB ensemble strategy over a broad range of clas-

sification and regression problems examined in the previous sections strongly

suggests the applicability of the method to a wide range of problems. In the

next section, we apply the BES-OOB strategy to the meta-learning-based al-

gorithm and parameter ranking problems.

4.8 Theoretical Aspect of the BES Strategy

Although in recent years, the ES algorithm has been highlighted in winning

solutions of many data mining competitions [144], there is no theoretical work

on explicitly examining the convergence property of the forward stepwise pro-

cedure used in the algorithm. Here we attempt to give a brief discussion on

the theoretical aspect.
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Here we employ the notations used in [29] in the context of high-dimensional

variable selection. For simplicity, we use the regression setting as an ex-

ample. Consider a general linear model with univariate response Y and m-

dimensional covariates X ∈ χ ⊆ Rm: Y1, ...Yn independent g(E[Yi|Xi = z]) =

µ +
∑m

j=1 βjz
(j), where g(.) is a real-valued link function, µ denotes the in-

tercept, z = {x1, x2, ..., xm} (where xv are the predictions from the m base

models) and the covariates Xi. For simplicity we absorb µ into the right hand

side, and then an ES model can be expressed by:

f(x) = fµ,β(x) =
m∑
j=1

βjz
(j).

In the ES model, we have an (empirical) loss function l(β) = 1
n

∑n
i=1 lβ(Xi,Yi)

where the value of the loss is estimated from a hillclimb set. In every iteration

k = 1, 2, ..., we have an active set of variables (base model predictions) H:

Hk ⊆ {1, ..., p}.

Now, the problem is to look for an additional variable reducing the empirical

loss most when adding it to the previous active set (ensemble). For a subset

Hk−1 ⊆ {1, ..., p}, βH ∈ Rm is defined as:

βj,H =


βj, j ∈ H,

0, j /∈ H.

Therefore the ES procedure estimates the weights corresponding to H by:

β̂ = argmin
βH

l(βH),

where the minimization is done over the components corresponding to H. The

forward-stepwise procedure of ES searches in every iteration k for the best

single variable (base model) with index ĵm, and adds it to the previous active

set to reduce the empirical loss as much as possible:

ĵk = argmin
j∈{1,...,p}H[k−1]

l(β̂H[k−1]∪{j}),
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and the new ensemble (active set) is:

H [k] = H [k−1] ∪ {ĵk}.

Putting this in words, we see the forward step-wise method used in ES as a

“greedy” (active set) algorithm as we have described above, and the predictions

of each base regression model can be seen as the “feature” values.

When certain conditions are met, such as sufficient conditions for convex

optimization, use of squared error loss and in the absence of noise, the theoret-

ical convergence rate of the forward step-wise method used in ES is sublinear

in m. [29] proves it to be m−
1
2 . The BES strategy can be seen as running

multiple ES algorithms in parallel, therefore, the theoretical convergence rate

of BES is the same as the ES algorithm.

4.9 ES and BES-OOB for Meta-learning

In this section, we introduce the idea of applying the ES and the BES ensemble

strategies for the meta-learning-based ranking problem. The simple forward

model selection based ES for ranking works as follows: (1) start with an empty

ensemble; (2) add to the ensemble the ranker in the library that maximizes

the ensembles performance to the ranking error metric on a hillclimb set; (3)

repeat Step 2 until all ranking models have been examined; (4) return that

subset of rankers that yields maximum performance on the hillclimb set. To

distinguish between ES for classification, regression and ranking, we call the

above strategy ESMetal (Algorithm 4.2), stands for ES for meta-learning.

The basic idea of applying BES-OOB to ranking problems is relatively

straightforward. Algorithm 4.3 shows the pseudocode. In each bagging itera-

tion, firstly a library of base-level meta-learners (rankers) are trained based

on the corresponding bootstrap sample. Then, an ensemble of base-label

rankers is constructed using ESMetal. For simplicity, we call the algorithm



111

Algorithm 4.2 The ESMetal Algorithm for Ranking
Input Training set St

Input Hillclimb set Sh

Input The ESMetal model library L

Input Ranking performance metric M

train base-level rankers in L on St

E = do ensemble selection based on base rankers’ performance M on Sh,

e.g., forward stepwise ensemble selection

return E

BESMetal, stands for BES for meta-learning.

4.9.1 Case Study 1: Algorithm Ranking

In this experiment we use the algorithm ranking dataset which has been used

in Section 3. The dataset has 466 instances, 80 numeric features and 20 target

labels (corresponding to 20 algorithms). Figure 3.1 in Section 3 shows the

format of the dataset.

We compare the ranking performances of three algorithms under 8 ranking

evaluation metrics and functions. The performance value of each algorithm

is estimated using 10 runs of 90% vs. 10% training/testing split evaluation.

All three algorithms in comparison use 1000 base-level rankers. The detailed

parameter settings are as follows:

ART forests—We use 1000 ARTs, and the minimum number of instances

γ at a leaf node is set to 1 for each ART; The “pruning” parameter θ is set to

0.95.

BESMetal-a—We set the number of bagging iterations to 10, and use

100 ARTs for the ESMetal algorithm in each bag. The minimum number of

instances γ at a leaf node is set to 1 for each ART; The “pruning” parameter
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Algorithm 4.3 The BESMetal Algorithm for Ranking
Input Training set S

Input The ESMetal algorithm E

Input number of bootstrap samples T

Input performance metric M

for i = 1→ T do

Sb = get a bootstrap sample from S

Soob = out of bag sample

train base-level rankers in the model library of E on Sb

Ei = do ensemble selection based on base rankers’ performance M on Soob

end for

θ is set to 0.95. Here the algorithm named BESMetal-a, stands for BES for

meta-learning using ART as the base learners. BESMetal-a is set to optimize

the target metric directly.

BESMetal-d—We set the number of bagging iterations to 10, and use

100 different rankers for the ESMetal algorithm in each bag. The 100 rankers

include:

• 1 default ranker

• 29 k -NN rankers with different k values (k ∈ {1, ..., 29});

• 20 ART rankers with different parameter settings (e.g., number of in-

stances at a leaf, and the maximum R2 value);

• 20 binary pairwise comparison (BPC) rankers with different parameter

settings (logistic regression is used as the base learner, with different

ridge values);

• 20 PCTR (predictive clustering tree for ranking) ranker with different

parameter settings (e.g., number of instances at a leaf ∈ {1, ..., 20});
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Metric ART forests BESMetal-a BESMetal-d DefRanker

SRCC 0.613± 0.01 0.615± 0.01 • 0.620± 0.01 • 0.472± 0.03 ◦

WRC 0.597± 0.02 0.604± 0.01 • 0.611± 0.01 • 0.460± 0.03 ◦

LA@1 0.229± 0.06 0.228± 0.04 0.224± 0.05 ◦ 0.135± 0.05 ◦

LA@3 0.491± 0.08 0.501± 0.06 • 0.485± 0.06 ◦ 0.394± 0.07 ◦

LA@5 0.629± 0.09 0.625± 0.08 ◦ 0.630± 0.06 0.504± 0.06 ◦

NDCG@1 0.422± 0.06 0.429± 0.05 • 0.432± 0.04 • 0.330± 0.04 ◦

NDCG@3 0.422± 0.02 0.428± 0.02 • 0.435± 0.02 • 0.341± 0.02 ◦

NDCG@5 0.488± 0.02 0.491± 0.03 • 0.493± 0.02 • 0.404± 0.02 ◦

Table 4.6: A comparison of ranking performances of the three algorithms on

the algorithm ranking problem. • ◦, ART forests is significantly worse or

better, respectively, based on paired t-test at significance level 0.05.

• 10 AdaRank ranker with different parameter settings (“weak (depth=3)”

ART is used as the base learner for AdaRank; number of iterations of

AdaRank is set to 30).

Here the algorithm name BESMetal-d, stands for BES for meta-learning

using a diverse base-level meta-learners (rankers) library. BESMetal-d is set

to optimize the target metric directly.

Table 4.6 shows the comparison results of ranking performances on the

algorithm ranking problem. The performances of the default ranker (please

see Section 3 for details) is also included as a baseline. The BESMetal-a al-

gorithm significantly outperforms the ART forests algorithm on 6 out of 8

metrics, indicating that the BES strategy (BESMetal-a) is more likely to find

a better ensemble than the simple averaging method used in ART forests.

The BESMetal-d algorithm is significantly better than the ART forests algo-

rithm on 5 out of 8 metrics. However, on the LA@1 and LA@3 functions, the

BESMetal-d algorithm is significantly worse, which seems to suggest that BES



114

Figure 4.15: Heat map of the AUC space based on random forests models.

with a diverse model library is not stable on non-smooth metric functions.

However, this does not necessarily imply BESMetal-a is a better algorithm

compared with BESMetal-d since the model library used by BESMetal-d in

this experiment is relatively small (only 100 base rankers). In future work,

we plan to do an empirical comparison between BESMetal-a and BESMetal-d

with different settings on multiple datasets.

4.9.2 Case Study 2: Parameter Ranking

In this case study, we examine the predictive performances of ART forests,

BESMetal-a and BESMetal-d in the context of parameter ranking for the ran-

dom forests algorithm. Similar experiments can be done for other machine

learning algorithms.

Random forests [25] is a popular off-the-shelf ensemble learning algorithm.

Not only does it produces accurate models for real-world problems, but it also

features a relatively small number of parameters.
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The random forests6 algorithm implemented in WEKA is used in the fol-

lowing experiment. We use meta-learning to rank the combinations of two

parameters, namely, the percentage of features to be used as random features,

K; and the depth of a random tree, D. Figure 4.15 shows an example of the

3-fold CV based AUC space of random forests (with 30 trees) on a binary clas-

sification dataset. We can see that although the overall AUC scores are already

very good (all greater than 0.95), there are clearly multiple “hot zones (highest

AUC scores)” in the heat map, indicating that some parameter pairs can pro-

duce “better than average” models. For application domains that require “as

accurate as possible” models, parameter selection is essential. Meta-learning

goes one step further by providing algorithm/parameter ranking instantly.

Next, we describe how the meta-dataset for this experiment is generated.

The following parameters are used:

K ∈ {0.1, 0.2, 0.3, ..., 1.0} and D ∈ {1, 2, 3, ..., 7}.

For instance, K = 0.1 means random 10% of all features are used for finding

the best feature to split for an inner node; D = 5 means a base-level tree will

stop growing if its depth exceeds 5. The above parameters can be transformed

to 10× 7 = 70 parameter pairs:

Pair 1: K = 0.1 and D = 1

Pair 2: K = 0.1 and D = 2

...

Pair 69: K = 1.0 and D = 6

Pair 70: K = 1.0 and D = 7

So in this case, each instance of the meta-dataset consists of two parts:

the meta-feature vector (80 SIL meta-features) and a rank vector correspond-

ing to 70 parameter pairs, where the rank vector has 70 rank values, r ∈

{1, 2, 3, ..., 70}. The rank values are generated based on 10-fold CV based

6The weka.classfiers.trees.RandomForest class
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Metric ART forests BESMetal-a BESMetal-d DefRanker

SRCC 0.484± 0.04 0.489± 0.03 • 0.491± 0.04 • 0.390± 0.04 ◦

WRC 0.446± 0.04 0.447± 0.04 0.449± 0.06 • 0.310± 0.04 ◦

LA@1 0.054± 0.03 0.053± 0.04 0.050± 0.04 ◦ 0.008± 0.01 ◦

LA@3 0.135± 0.03 0.131± 0.03 ◦ 0.133± 0.05 ◦ 0.058± 0.03 ◦

LA@5 0.167± 0.04 0.173± 0.05 • 0.165± 0.05 ◦ 0.070± 0.03 ◦

LA@10 0.259± 0.07 0.260± 0.05 • 0.260± 0.06 0.208± 0.04 ◦

NDCG@1 0.136± 0.05 0.137± 0.03 • 0.139± 0.04 • 0.086± 0.02 ◦

NDCG@3 0.162± 0.03 0.165± 0.02 • 0.159± 0.04 ◦ 0.119± 0.01 ◦

NDCG@5 0.199± 0.02 0.201± 0.03 0.192± 0.05 ◦ 0.150± 0.01 ◦

NDCG@10 0.280± 0.02 0.288± 0.02 • 0.283± 0.04 • 0.231± 0.01 ◦

Table 4.7: A comparison of ranking performances of the three algorithms on

the algorithm ranking problem. • ◦, ART forests is significantly worse or

better, respectively, based on paired t-test at significance level 0.05.

AUC score of each parameter pair. For each individual parameter pair, we

have 500 random trees as the base-level models. One reason for using AUC

scores to generate rankings is that the number of ties is negligible. The final

meta-dataset in this experiment consists of 466 instances (because we have 466

datasets). Each instance has 80 meta-feature values and 70 rank values.

We use the same three algorithms and experimental settings described in

Case Study 1, except for two additional metrics: LA@10 and NDCG@10 are

added due to the dataset having much more labels than the algorithm ranking

problem. The performance of the default ranker is also included as a base-

line. Table 4.7 shows the comparison results of ranking performances on the

parameter ranking dataset (for random forests). The BESMetal-a algorithm

significantly outperforms the ART forests algorithm on 6 out of 10 metrics.

There are 3 ties between these two algorithms. The result indicates that the
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BES strategy (BESMetal-a) is more likely to find a better ensemble than the

simple averaging method used in ART forests. The BESMetal-d algorithm is

significantly better than the ART forests algorithm on 4 out of 10 metrics, but

significantly worse on 5 out of 10 metrics. The result seems to suggest again

that BES with a diverse model library (BESMetal-d) is unstable, and is more

likely to overfit than simple averaging. In future research, we will attempt to

improve this issue.

4.10 Conclusions

In this chapter, we proposed a new ensemble learning algorithm—Bagging En-

semble Selection (BES) for classification, regression and meta-learning-based

ranking with extensive empirical evaluation and preliminary theoretical anal-

ysis.

For the meta-learning-based algorithm/parameter ranking problems, our

experimental results indicate that the BES strategy based BESMetal-a al-

gorithm is more likely to produce a better ensemble than the ART forests

algorithm. One reason could be that BESMetal-a can be set to optimize the

target metric directly in the base-level ensemble construction stage.

Yet our studies of the BESMetal-d algorithm (with a diverse ranking model

library) have shown mixed results. One reason could be due to that, compared

to our experiments in the regression setting, the number of instances in the

meta-datasets for algorithm/parameter ranking is too small (only 466 exam-

ples), which led to a diverse ranking model library becoming to be more likely

to overfit.



Chapter 5

Meta-Heuristic Search Based

Full Model Selection

In this chapter1, we propose a framework, in the DMO space setting, which can

be used for designing new Meta-heuristic search based full model selection, or

FMS algorithms, and a novel FMS algorithm which can be seen as a realization

and an application of this framework.

5.1 Motivations

Machine learning users now have to face the new problem of how to choose

a combination of data processing tools and algorithms. The goal is usually

defined as maximizing or minimizing a quantitative measure. In classification

problems, the goal could be optimising the classification accuracy, the Lift score

or the ROC area (AUC); in regression problems the goal could be optimising

RMSE (root mean squared error), MAE (mean absolute error), or any other

proper loss function.

1Part of the research presented in this chapter has appeared in [147, 148]
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(a) An illustration of the DMO space

(b) A graphical representation of the

DMO template used by GPS

(c) A graphical representation of a

DMO solution template instance

Figure 5.1: A full model defined by the GPS algorithm

Sometimes the final goal might be a combination of multiple goals. Tra-

ditionally, these problems are addressed separately in the feature selection,

model or parameter selection and the meta-learning fields. A practical data

mining problem consists of many sub-problems which presents an extremely

large search space that could be a very time-consuming task for humans to

explore manually. Therefore, strategies and methods that can help people to
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choose, or that could automatically suggest, an optimised data mining solu-

tion are useful. In this chapter, we propose a framework which can be used for

designing new FMS algorithms, and we also present a novel FMS algorithm

which is a realization and an application of the proposed framework.

5.2 The DMO Space

We first define the DMO space and discuss potential approaches for searching

the space. We here attempt to define a search space that consists of all data

mining actions (operators) that are available to a given dataset for a user-

specified goal, such as a set of outlier filters, a set of feature selection methods,

a set of data transformation techniques and a set of base learning algorithms.

In this sense, we call the subject of interest “the space of data mining operators

(DMO)”, or simply “the DMO space” [147].

In this search space, a data mining solution is abstracted as a directed

acyclic graph (DAG) consisting of DMOs that are connected based on some

relations: see Figure 5.1 (a) for an illustration. For simplicity, in Figure 5.1 (a)

we consider that an optimal data mining solution is given by a DAG defined

by four DMOs (A, B, C and D) for dataset T . The DMO space is represented

by the largest oval, which consists of all DMOs applicable to T . The directed

arrows represent the relationships (action rules) in the DAG. If Operator A

is an outlier filter, Operator B is a feature reduction method, Operator C is

a decision tree algorithm, and Operator D is a post-processing method, the

DAG can be interpreted as follows: given a dataset T , in an optimal solution

we first use the outlier detection method (DMO A) to remove outliers, and

then we employ the feature selection method (DMO B) to remove useless

features, and then build a decision tree model (DMO C ), and finally, we use a

probability calibration method (DMO D) to calculate the model outputs. This

is a very large search space because in theory there exists an arbitrary number
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of DMOs (including an arbitrary number of link directions, node orders and

arrangements). Therefore, the next question is how to search in this space?

5.3 DMO Objects

In practice, due to the limited resources at hand, usually we do not search in

an infinite DMO space, and, moreover, we can make the DMO space a finite

space by defining the DMOs that are to be included. For example, given a

dataset T , and given we have one outlier detection algorithm, two feature se-

lection methods, three classification algorithms and that the goal is to build a

model that gives the lowest classification error on T , typically, we can define

the following node type DMO objects:

DMOfilter, DMOno−filter, DMOfeature−selection−1,

DMOfeature−selection−2, DMOno−feature−selection,

DMOalgorithm−1, DMOalgorithm−2, DMOalgorithm−3.

For simplicity, we rewrite the above DMOs to:

filter, no-filter, feature-selection-1,

feature-selection-2,no-feature-selection,

algorithm-1, algorithm-2, algorithm-3.

Given these DMOs, if we want to preprocess the data, we can define some

function type DMOs that output a new data object. For example:

data⇐= preprocessing-1(filter, feature-selection-1)

data⇐= preprocessing-2(no-filter, feature-selection-1)

data⇐= preprocessing-3(filter, feature-selection-2)

...

where preprocessing-1,2,3 are function type DMOs. We can also define more
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complex function type DMOs which take function and node type DMOs as

inputs and output a solution. For example:

solution⇐= build-model(preprocessing-1, algorithm-1)

solution⇐= build-model(preprocessing-2, algorithm-2)

solution⇐= build-model(preprocessing-3, algorithm-1)

...

where build-model and preprocessing-1,2,3 are all function type DMOs. In

this way, we are free to define which, and what kind of, DMOs are to be added

to the DMO space.

To meet the data mining goal, we could simply search all the DMO function-

object relations (paths) in the space. Therefore, the solution which has the

lowest classification or regression error could be the output of a grid-search-

like exhaustive search. One advantage of an exhaustive search in a finite DMO

space is that the user controls the search complexity. Another advantage is

that the DMO relations can be designed by a data mining expert and then

shared and reused. For example, if an expert designed a good DMO search

space for an unbalanced binary classification problem, she can probably share

it with her colleagues or reuse it for a new project.

However, the disadvantage is also obvious because the search complexity

grows dramatically as the number of DMOs increases, with the result that if

the search space is too large, due to computational and time costs the user

may have to terminate the search before all DMOs are explored. To overcome

this problem, we may need to think about questions such as how promising

DMOs can be automatically defined/generated for a given dataset.

In the previous examples, we have defined some DMOs by hand. One

could generate DMOs simply by generating all possible DMO combinations of

different types, but doing so would create an extremely large (even infinite)
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search space, and the problem becomes intractable. We here propose a semi-

automatic method to solve this problem.

Firstly, we define some DMO functions, and add these functions to the

DMO search space as we did on previous page. Secondly, we define some tem-

plates (rules) for searching. Here are two examples:

solution⇐=

chain-search([filter], [feature-selection], [tree-model]) (1)

solution⇐=

chain-search(random-topology-search([filter], [feature-selection]), [tree-model])

(2)

Template (1) is a chain solution. Here a chain solution means the order (such

as from left to right) of each DMO does matter. A “[...]” is a placeholder for

a certain type of DMO object: in this example, the [filter] placeholder can be

substituted by any filter-type DMO. The [feature-selection] placeholder follows

the same rule, and the [tree-model] placeholder can be substituted only by a

“tree” type model. In template (2), we can see a new DMO function called

“random-topology-search”, which means that the order of the DMOs will be

changed automatically during the search. So we can see that template (1) is

actually a specialisation of template (2). Once we have a set of DMO objects

added, and a DMO template defined, then we have a finite DMO space.

Please note that the DMO definition supports recursive application of op-

erations. For example:

chain-search(A, B, C) ⇐=

RETURN chain-search(A, B, C) IF runtime(solution) < 1 hour ELSE RE-

TURN chain-search( REMOVE-BASED-ON-RUNTIME(A, B, C) )
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So far, we have defined a DMO space that consists of node type DMOs,

function type DMOs and DMO templates. In the template part of the search

space, we will have to make a decision on what kind of search strategy to use

when searching for substitution DMOs for placeholders. We here consider only

cases where an exhaustive search (in the case of too many DMOs permutations)

is not feasible, and we are particularly interested in a search method that

optimises a problem by iteratively trying to improve a candidate DMO with

regard to a given measure of quality (the goal metric). These methods are

usually referred to as a “heuristic search”, such as the best-first search, the local

search (using neighborhood relation) and the population-based evolutionary

algorithms.

5.4 Related Work

The PSMS system proposed in [51], is an application of Particle Swarm Opti-

mization (PSO) to the problem of full model selection for binary classification

problems. In total, 3 feature transformation objects, 13 feature selection ob-

jects and 10 classifier objects are used in the PSMS system. A full PSMS

model is defined as a 16-dimensional particle position. For the details of the

PSMS system, we refer the reader to [51]. Based on the experimental results

in [51], the PSMS system shows promising results when it is compared with

the Pattern Search (PS) strategy [112] for the FMS problem. The system also

showed competitive performance compared with other search strategies in a

model selection competition.

From the system architecture point of view, PSMS assumes that a full

model has three components: feature transformation, feature selection, and

learning algorithm. In the DMO framework, we can define the following DMO

template for the search space covered by the PSMS system:

solution⇐= chain-search(
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random-topology-search([feature-transformation], [feature-selection]),

[algorithm])

We can see that the search space covered by the above DMO template is a

simplified presentation of a full model, because a full model may have other

components, such as data cleansing and data sampling. Extended from our

previous work [147], in the next section, we introduce a novel search strategy

for the FMS problem, which covers five data mining components, namely,

data cleansing, data sampling, feature transformation, feature selection and

algorithm DMOs.

5.5 The GPS Search Strategy

In this section, we propose a novel algorithm for searching for a FMS solution

in the DMO space. The algorithm combines both genetic algorithm (GA) [77]

and particle swarm optimization (PSO) [87]. GA is used for searching the

optimal template instance of a DMO template, and PSO is used for searching

the optimal parameter set for a particular template instance. The motivation is

that GA is usually considered a good strategy for combinational optimization

problems, whereas PSO is usually considered good at numerical optimization.

The proposed algorithm is named as GPS (GA-PSO FMS). It can be seen

as a realization and an application of the DMO framework. Before introducing

the GPS algorithm, we first define a DMO template. Here, we assume a FMS

solution consists of five DMOs:

[data-cleansing],

[data-sampling],

[feature-transformation],

[feature-selection], and

[algorithm] .

Then, a DMO template for the FMS problem covered by GPS is defined as:
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solution⇐=

chain-search(

random-topology-search(

[data-cleansing], [data-sampling], [feature-transformation], [feature-selection]),

[algorithm]) (3)

Graphically, this template can be represented as Figure 5.1 (b). The four

DMOs at the top can be performed in any order, then followed by an Algorithm

DMO. Figure 5.1 (c) shows a solution instance of the DMO template, which

can be interpreted as: given a dataset, we firstly apply the data sampling

technique, SMOTE [39], followed by applying log-transformation, then, we do

IQR outlier detection, and then use information gain based feature selection;

finally, an AdaBoost.M1 [55] model is built based on the transformed data.

We call such a solution a “DMO solution template instance”, shortened to

“template instance”.

For each of the five DMOs we have defined in template (3), we have a pool

of data mining tools available. For this research, the filters and algorithms in

the WEKA [74] machine learning package are used. Table 5.1 shows the tools

that are included in the GPS system.

Algorithm 5.1 shows the pseudocode of the GPS algorithm. The basic steps

of the system are: firstly a initial population of DMO template instances is

randomly generated based on a predefined template (e.g., template (3) and

Figure 5.1 (b)), and the placeholders of each template instance are randomly

populated with the objects in the pools of DMOs (e.g., Figure 5.1 (c)).

Then for each GA iteration (generation), PSO is used for searching for

optimal parameters for each template instance (similar to the PSMS system).

The population of template instances is then sorted by their PSO-based eval-

uation scores. After the PSO optimization procedures are done, typical GA

operators, such as crossover and mutation, can be applied for generating new
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Algorithm 5.1 Pseudocode of the GPS strategy for searching a FMS solution

Inputs T (number of generations for GA), P (population size for GA), M

(number of evolutions for PSO), W (swarm size for PSO), G (goal metric)

Get P random template instances based on template (3)

Populate template instances with objects in the DMO pools (Table 5.1)

for i = 1→ T do

Use a standard PSO procedure PSO(M ,W ,G,I) to search for the optimal

parameters for each template instance I (optimising the goal metric G),

and assign an evaluation score to each template instance I. This procedure

is similar to the PSMS system [51].

Do crossover // single point crossover among the top 20% template in-

stances

Do mutation // randomly choose 30% template instances from the pop-

ulation, and randomly change one DMO in each template instance

Replace the worst N template instances with the N new template in-

stances generated in the above two steps, here we useN = (20%+30%)×P

solutionbest ← populationbest

end for

return solutionbest

template instances which are used for replacing the template instances with

relatively low evaluation scores. The above procedure is repeated T times,

where T is the number of GA generations. Finally, the template instance with

the best evaluation score is returned as the GPS solution.
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5.6 Comparing GPS to PSMS and Other Learn-

ing Systems

We experiment with ten classification problems. All of them are real-world

datasets which can be downloaded from the UCI repository, the UCSD data

mining contest repository and the KDD Cup repository. These data sets were

selected because they are large and come from different research and industrial

areas.

To speed up the experiments, all five multi-class datasets were converted

to binary problems by retaining only the two largest classes from each. After

this conversion to binary problems, for datasets that are larger than 10,000

instances, a subset of 10,000 instances is randomly selected for experiments.

Table 4.1 shows the basic properties of the original and the final datasets.

To test the performance of the GPS algorithm, we implemented a variant2

of the PSMS system proposed in [51] with the DMO pools defined in Table

5.1.

The two systems are set to optimise the AUC performance3 and are tested

under 30 configurations (3 experiments per dataset): for GPS, the population

size for GA and the swarm size for PSO are both set to 10, and the number

of PSO evolutions is set to 10; for PSMS, the swarm size is set to 10.

For each dataset, three experiments were conducted. Let g be the number

of GA generations for GPS; when g=10, the number of PSO evolutions for

PSMS is set to 1000; when g=20, the number of PSO evolutions for PSMS

is set to 2000; when g=30, the number of PSO evolutions for PSMS is set to

3000. So, for each experiment, the training cost for both systems is roughly

the same.

2In our implementation, the dimensionality of each particle is adapted automatically

based on the number of parameters of a particular DMO
3The balanced error rate (BER) was used in the original PSMS system
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The objective functions of both GPS and PSMS are based on the respec-

tive training set AUC performance obtained from 3-fold cross validation of a

particular template instance. The AUC performance of two popular ensem-

ble learning algorithms, AdaBoost.M1 [55] with 1,000 decision stumps, and

Random Forest [25] with 1,000 unpruned random trees are also reported as

baseline performance.

Figure 5.2 (a) to Figure 5.2 (j) show the comparison results based on the

AUC performance obtained from 5 times 3-fold cross validation.

Figure 5.2 (k) gives a summary in terms of number of wins. Overall, on

the 10 datasets, the GPS algorithm wins 83% (25 wins) of the 30 experiments.

The results demonstrate the benefit of combining GA and PSO for the FMS

problem. Also, we can see that the best performance of both GPS and PSMS

outperform AdaBoost.M1 and Random Forest on 9 out of the 10 datasets,

which indicates the advantage of a full model over the single algorithm model.

Another interesting pattern is that the GPS algorithm outperforms the baseline

algorithms with big margin on datasets with a relatively imbalanced class

distribution.



130

(a) Adult (b) Chess (c) Connect-4

(d) Covtype (e) KDD Cup 09 (f) Localiz.P.Act.

(g) Magic. (h) MiniBooNE. (i) Poker

(j) UCSD (k) Overall number of wins as

histogram

Figure 5.2: A comparison of AUC performance between GPS and PSMS under

30 different configurations; the number of PSO evolutions for GPS is set to 10;

x-axis g is the number of GA generations for GPS; when g=10, the number

of PSO evolutions for PSMS is set to 1000; when g=20, the number of PSO

evolutions for PSMS is set to 2000; when g=30, the number of PSO evolutions

for PSMS is set to 3000
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Data Sampling Data Cleansing Feature Trans. Feature Sel.

SMOTE oversampling NumericCleaner Normalize CfsSubsetEval

Resample with replacement RemoveUseless Standardize InfoGainAttributeEval

Resample no replacement ReplaceMissingValues Center GainRatioAttributeEval

Do nothing Do nothing AddNoise OneRAttributeEval

Discretize PrincipalComponents

NominalToBinary ChiSquaredAtt.Eval

NumericTransform Do nothing

Do nothing

Algorithm HyperParameters

Bagging with Random Tree num.Bagging.Iterations, num.Atts., depth.Tree

Bagging with REPTree num.Bagging.Iterations, num.Folds., depth.Tree

AdaBoost.M1 with DecisionStump num.Boosting.Iterations , useResample

LogitBoost with DecisionStump num.Boosting.Iterations , useResample

Bagging with J48 Decision Tree num.Bagging.Iterations , prune , conf.

RotationForest with REPTree num.Iterations, Percentage.removed, projection

Table 5.1: WEKA algorithms and filters that are used as the DMO objects

5.7 Speeding Up the GPS System

The training complexity of the GPS algorithm depends on the base learners

found and evaluated during the search. The main cost for GPS is the cost for

estimating a base learner’s performance (e.g., cross validation). The algorithm

searches for a full model consisting of many data mining operators. Therefore,

although GPS is powerful in modeling, the user may have to wait for several

hours, or even days on relatively large data. For example, on the reduced

version of the KDD Cup 2009 data (with 50,000 data points and 190 numeric

attributes), the GPS system took about six hours to complete on an AMD 2.8G
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PC with 16G RAM (number of GA generations, number of PSO evolutions,

GA’s population size and PSO’s swarm size were all set to 10, and 3-fold cross

validation was used in the objective function). Therefore, in this section, we

present a strategy for speeding up the GPS algorithm. Before introducing the

new algorithm, we first review the model tree idea.

5.7.1 Model Trees

A model tree [160] is a decision tree system that uses linear models at the

leaves instead of using discrete class labels for a classification tree or mean as

the prediction for a regression tree. Model trees, like decision trees scale well

since the training data is stored in a tree structure. Some variants that have

been designed based on the model tree idea show promising results, such as

the logistic model tree [92].

5.7.2 Full Model Tree

We here propose a novel GPS-based model tree algorithm named the Full

Model Tree, because GPS builds a full model on a given dataset. The idea is

that instead of training the GPS algorithm on the full training data, we build

GPS models at the leaves of a tree structure. In the second set of experiments

in this chapter, we compare GPS to Full Model Tree with two different tree

structures, namely, the perfect binary tree and the random binary tree based on

the following definitions. Figure 5.3 shows two examples of the tree structures

for the KDD Cup 2009 data.

Definition 1: A perfect binary tree is a binary tree with all leaf nodes at

the same depth.

Definition 2: A random binary tree is a binary tree formed by inserting

nodes one at a time according to a random mechanism.

Next, we show that theoretically when the above two binary tree structures
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GPS Model 1 GPS Model 2 GPS Model 3 GPS Model 4 GPS Model 5 GPS Model 6 GPS Model 7 GPS Model 8

Var24

Var72 Var30

Var35 Var119 Var95 Var46

(a) An illustration of a perfect-binary-tree-based Full Model Tree (FMT-perfect) with height

= 3

GPS Model 1 GPS Model 2 GPS Model 3 GPS Model 4

GPS Model 5

Var24

Var72

Var35 Var119

(b) An illustration of a random-binary-tree-based Full

Model Tree (FMT-random) with height = 3

Figure 5.3: GPS-based Full Model Trees with two different tree structures on

the KDD 09 customer churn data, tree heights are set to 3

are used, and if the tree height is greater than zero and the training complexity

of GPS is worse than linear, then GPS-based Full Model Tree is faster than

GPS when training on the same data.

Assume the running time of the normal GPS algorithm (GPS-0) for training

its model on a dataset of n data points is O(f(n)), and that for the GPS-based

Full Model Tree is O(g(n)). Based on our preliminary experiments, we found

that the empirical training complexity of GPS is worse than linear on most of

the datasets we have tested, so here we consider the case for f(n) > n1, n > 1.

Theorem 1. For a perfect-binary-tree-based GPS Full Model Tree T with

height h ≥ 1; If GPS-0’s empirical training complexity is worse than linear,
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such as f(n) > n1, n > 1, then we have g(n) < f(n).

Proof.

Let l be the number of leaf nodes of T , we have l = 2h, (l ≥ 2).

Let k be the number of data points at each leaf of T , we have k = n/l. Then,

we have g(n) = l × f(k) and f(n) = f(k × l).

Let f(n) = nx, so we have x > 1.

f(n)− g(n) = f(k × l)− l × f(k)

= (k × l)x − l × kx

= kx × lx − kx × l

= kx × (lx − l)

= kx × lx−1

> 0.

Theorem 2. For a random-binary-tree-based GPS Full Model Tree T with

height h ≥ 1; If GPS-0’s empirical training complexity is worse than linear,

such as f(n) > n1, n > 1, then we have g(n) < f(n).

Proof.

Let l be the number of leaf nodes of T , h ≥ 1 so we have l ≥ 2.

Let ki be the number of data points at leaf i of T , we have
∑l

i=1 ki = n.

Let f(n) = nx, we have x > 1, then we have g(n) =
∑l

i=1 g(ki) =
∑l

i=1 ki
x and

f(n) = nx = (
∑l

i=1 ki)
x. Therefore, f(n)−g(n) = {(

∑l
i=1 ki)

x−
∑l

i=1 ki
x} > 0.

The two theorems state that theoretically the two Full Model Tree variants

are faster than GPS in the case that the training complexity of GPS is worse

than linear. Results above are also applicable to memory consumption stating

that the two Full Model Tree variants are supposed to be more memory efficient

than GPS if the training complexity in terms of memory of GPS is worse than
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Algorithm 5.2 Full Model Tree (FMT)

Input:

D (training data)

h (the tree height)

C (splitting and stopping criterions, details are given in Sec 5.7.3)

bestSplit ← Test features based on the splitting criterion C.

if stopping criterion (e.g., tree height = h or the current data contains only

one class label) is met then

Build a GPS model and return a leaf node.

else

// D+ and D− are two sub-partitions based on the best split.

leftSubtree ← FMT(D+
bestSplit, h, C)

rightSubtree ← FMT(D−bestSplit, h, C)

Return (bestSplit, leftSubtree, rightSubtree)

end if

linear. The results also imply that if GPS’s training complexity is linear or

better, then theoretically the Full Model Tree variants will not speed up the

original GPS algorithm. Please note that in this complexity analysis we did not

consider the cost for training the tree structure itself. When full model trees

are used in an ensemble strategy, one should also consider the cost for building

a particular full model tree variant. Next, we describe how the GPS-based Full

Model Trees are built.

5.7.3 Growing GPS-based Full Model Trees

Algorithm 5.2 shows the pseudocode of FMT. Next we explain how a FMT

is built. When growing a perfect binary tree, firstly the algorithm checks if the

tree height is equal to a user-specified value h. If tree height = h or the current
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data contains only one class, then make a leaf node and build a GPS model, else

the best variable is selected for splitting. Here, best is based on the information

gain measure of a variable. For numeric variables, we examine information gain

using the median of a variable as the splitting point; for nominal variables,

we balance the number of data points from distinct categorical values. For

instance, imagine a nominal variable having two distinct categorical values A

and B ; if the data has 100 data points, where 80 of them belong to A, and 20

of them belong to B, then we randomly select 30 data points from A, and put

them into B. If the nominal variable has three distinct categorical values, say

A with 60 data points, B with 30 data points, and C with 10 data points, then

we merge B and C first, and then balance A and BC by randomly moving 10

data points from A to BC. The same balancing strategy is also applicable to

a nominal variable having more than three distinct categorical values. In this

way the amount of data from the current node is roughly equally split for its

two child nodes.

When growing a random binary tree, firstly the algorithm checks if the tree

height is equal to a user-specified value h. If tree height = h or the current

data contains only one class, then make a leaf node and build a GPS model,

else the algorithm randomly chooses one of the best K variables for splitting.

Here, best is based on the information gain measure of a variable, where K is

a user-specified value. For numeric variables, the best splitting point is found

by trying all possible splitting points between two neighbored numbers (the

splitting point with the highest gain will be selected); for nominal variables, the

data is split between the majority categorical value and the other categorical

values.

Predictive Performance and Runtime Next, we examine both the

predictive performance and the runtime of the two Full Model Tree variants

(one uses the perfect binary tree structure, the other uses the random binary
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Dataset GPS FMT-perfect FMT-random GPS FMT-perf. FMT-rand.

AUC Runtime (mins)

Adult .94 ± .002 .93 ± .003 .93 ± .002 	 45 ± 6 37 ± 4 ♦ 48 ± 11

Connect-4. .95 ± .002 .95 ± .002 .95 ± .003 	 91 ± 5 77 ± 9 ♦ 74 ± 14 ♦

KDD Cup. .77 ± .002 .77 ± .002 .76 ± .003 	 178 ± 9 157 ± 11 ♦ 189 ± 8

Mini.B.E. .98 ± .002 .98 ± .002 	 .97 ± .003 	 124 ± 7 123 ± 9 135 ± 12

UCSD. .68 ± .003 .68 ± .002 	 .67 ± .002 	 487 ± 16 417 ± 19 ♦ 476 ± 17

Table 5.2: Performance and runtime of the GPS and the Full Model Tree

algorithms; A “	” indicates that in terms of AUC, the GPS algorithm is

significantly better than the respective algorithm; A “♦” indicates that in

terms of runtime, the GPS algorithm is significantly slower than the respective

algorithm; level of significance 0.05

tree structure, namely, FMT-perfect and FMT-random, respectively) to the

original GPS algorithm.

We use five medium size datasets for this experiment. Table 4.1 shows the

properties of these datasets. The original KDDCup09 dataset has 50,000 data

points, 190 numeric variables and 40 categorical variables. To speed up the

experiment, the 40 categorical variables were removed from the data because

some variables have thousands of distinct values. We set the height of both

FMT-perfect and FMT-random to 3. So, for FMT-perfect, there will be 23 = 8

leaf GPS models to be built, and each leaf will have n/8±1 data points where

n is the total number of training data points. The K value for FMT-random is

set to log(M)+1, where M is the number of variables. For the GPS algorithm,

the number of generations for GA, the population size for GA, the number of

evolutions for PSO, and the swarm size for PSO are all set to 10. The objective

function of GPS is based on 2-fold cross validation.
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Figure 5.4: Performance and runtime of the GPS and the Full Model Tree

algorithms

Table 5.2 shows the comparison results based on 5 times 3-fold cross val-

idation. The AUC performance and the runtime are reported. For the AUC

performance, we can see that GPS significantly outperforms FMT-random on

all datasets, indicating that FMT-random is not good enough to be used as a

GPS alternative. The GPS algorithm significantly outperforms FMT-perfect

on two datasets; for the other three datasets, the performance of GPS and

FMT-perfect has no significant difference. This indicates that for these three

datasets, FMT-perfect can be used as a GPS alternative. In terms of run-

time, the FMT-random algorithm is significantly faster than GPS only on the

Connect-4. dataset. One reason could be that the number of data points at

the leaf nodes of FMT-random are not the same, so the empirical training

complexity of FMT-random varies at each leaf. We can see that FMT-perfect

is faster than FMT-random on all datasets because usually the number of leaf

nodes of FMT-random is less than that for FMT-perfect. The results show that
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FMT-perfect is significantly faster then GPS on 4 out of 5 datasets, indicating

that FMT-perfect is a viable approach for speeding up GPS. Overall, on 3 out

of 5 datasets, namely, Adult, Connect-4., and KDDCup09, the perfect-binary-

tree-based Full Model Tree could significantly speed up the GPS algorithm

without sacrificing GPS’s predictive power. Figure 5.4 shows the respective

bar chart based on the data in Table 5.2.

The FMT algorithms also provide a way of learning full models on larger

datasets. For example, if the memory consumption complexity of a data min-

ing solution returned by GPS is O(n3), where n is the number of training

examples. Then, training this solution on a relatively large dataset would be

infeasible. However, using FMTs we could reduce the actual memory con-

sumption of that solution. In this case, in order to get competitive accuracy,

FMT algorithms, such as the Random FMT could be used as base-learners of

an ensemble learning strategy, e.g., random forests.

5.8 The GUI system

We have developed a proof-of-concept system based on the DMO framework

using the GPS algorithm as the optimisation engine. Given a dataset, the

system searches for optimal solutions, including data preprocessing, outlier

detection, feature selection and algorithm DMOs. The final solution can be

saved as a WEKA object and loaded into the WEKA GUI or used with the

WEKA APIs. Figure 5.5 shows a screenshot of the system.

5.8.1 Workflow-Based Systems

A related and promising line of research focusses on developing workflow-based

graphical user interface for KDD (Knowledge Discovery in Databases) tasks.

These systems allow the end-user to design and optimise a KDD workflow

for a given dataset. Usually a KDD workflow consists of some GUI nodes



140

Figure 5.5: A proof-of-concept system based on the DMO framework using

the GPS algorithm as the optimisation engine.

connected by arrows (a sequence of connected steps), and is displayed on a

computer screen. A particular KDD workflow may be seen as an abstraction

and virtual representation of a real KDD task. Several workflow systems have

been developed over the past decade, including the workflow GUI of WEKA

[74], ADAMS [128], RapidMiner4, eIDA and ePro-Plan [88], and the eLico

project5.

5.9 Conclusions

In this chapter, we proposed a framework, in the DMO space setting, which

can be used for designing new full model selection, or FMS, algorithms, and

a novel FMS algorithm which can be seen as a realization and an application

of the framework. Our experiments on ten real-world problems show that the

GPS algorithm performs very competitively with PSMS, the state-of-the-art

4http://www.rapidminer.com
5http://www.e-lico.org
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PSO-based FMS algorithm. We also examined the feasibility of using the

model tree idea for speeding up the GPS algorithm. Our experimental results

suggest that using the perfect binary tree as the internal tree structure for the

GPS-based Full Model Tree algorithm is a viable approach when the empirical

training complexity of GPS is worse than linear. The techniques described in

this chapter could probably also be applied to regression and label ranking

problems, but this needs to be verified in a future study. Another future work

direction is to compare the performance of the GPS systems to fine-tuned

base-level ensemble algorithms. The 5-DMO template (3) defined in Section

2 is only one of many possible templates for practical data mining solutions,

in future research we will also investigate methods for optimizing alternative

templates simultaneously in a cloud environment.



Chapter 6

Future Work and Conclusion

Over the past few decades, a rich set of data analysis techniques, including

algorithms and methods, have been developed in the machine learning and

data mining community. Nowadays users of machine learning are facing a new

problem:

“How to choose an appropriate set of tools for a given data problem in order to

achieve better data mining than simply using an arbitrary selection of tools?”

This thesis has dealt with the challenging problem from two approaches,

both of which try to propose systematic and efficient solutions to the above

question, namely the meta-learning-based algorithm/parameter recommenda-

tion approach (the meta-learning approach) and the meta-heuristic search-

based full model selection approach (the FMS approach). The effectiveness of

the proposed algorithms and systems have been examined in the context of

algorithm, parameter and data mining solution recommendation.

6.1 Future Work

In this section, we discuss several directions for future research.
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6.1.1 Alternative Splitting Heuristics for ART

The splitting criteria of the ART algorithm is based on the R2 statistics. The

advantage of using R2 is that it can be computed using a close form formula.

Therefore ART is suitable to be used as the base-level learner for ensemble

learning.

The average rank vector used in ART is an approximation to the true modal

ranking. For some datasets, this approximation might not be good enough. In

this case, alternative statistics could be used as the splitting heuristics, such

as the F -statistics:

F =
n− L
L

∑L
l=1 n

(l)(d̄l − d̄)2∑L
l=1

∑n(l)

i=1(dli − d̄l)2
,

where L is the number of partitions, d̄l is the sample average of the distances

for partition l, and d̄ is the average of the entire sample, n is the sample size

and dli ≡ d(y<li>, ŵ<T>). Here, d̄ needs to be calculated by first calculating

all the pairwise distance between each ranking and ŵ<T> (the modal ranking)

needs to be estimated from the data.

6.1.2 Alternative Aggregation Methods for ART En-

sembles

In the ART forests algorithm, the final ensemble is aggregated based on simple

averaging, in which the weights of individual base-level models are all equal to

1/N , where N is the number of ART models. In the ESMetal algorithm, the

weight of each base-level model is calculated from a forward stepwise procedure

based on hillclimb set performances. By its nature, a ranking aggregation

method (or combiner) acts as a “smoother” in that it minimizes the effect of

outliers, such as rankings containing anomalies that seem inconsistent with

other rankings [93].

In future work, we plan to investigate alternative aggregation methods,
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such as aggregating based on counting inconsistent pairs and removing rank-

ings with too many inconsistent counts; Borda counting techniques; Graph-

theory-based aggregation and optimization-based aggregation, e.g., binary in-

teger linear program (BILP).

6.1.3 Multi-Purpose Optimization

When searching through the DMO space with a single goal, such as minimizing

the classification error, each DMO solution is evaluated based simply on its

classification error. However, we may have a complex goal (or multiple goals);

for instance, we might not only want the DMO solution to be optimized to the

classification error, but we might also want it to be memory efficient (e.g., use

a fixed amount of memory). In such a case, we could employ multi-purpose

optimization (MPO) techniques [109, 173]. A simple approach using MPO is

to give each goal a weight (specified by the user), and then the final evaluation

score can be expressed as:

scorefinal = w1scoregoal1+w2scoregoal2+, ...,+wKscoregoalK =
K∑
k=1

wkscoregoalk ,

where K is the number of goals. In this way, the final solution can be seen

as an optimal solution for all of the K goals. In future research, we will also

investigate MPO and related techniques for the problem of searching the DMO

space with multiple goals.

6.1.4 Multi-Criteria Decision Making

The meta-learning for algorithm/parameter recommendation problem could

possibly be studied in the Multi-Criteria Decision Making (MCDM) framework

[151, 152]. In the typical MCDM problem the decision maker is given m alter-

natives (such as algorithms) to evaluate in terms of n decision criteria (such as

accuracy, runtime, RAM consumption, interpretability etc). Denoted the m
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alternatives by (A1, A2, A3, ..., Am) and the n criteria by (C1, C2, C3, ..., Cm),

the task is to determine the relative performance of the m alternatives. A deci-

sion maker needs to form a decision matrix D and also determine the vector W

with the weights of the n criteria. An entry of M , denoted by mij represents

the performance of Ai in terms of criteria Cj.

A central problem in MCDM is how to make decisions when the criteria

are expressed in different units of measure [151]. There are several proposed

methodologies on how the MCDM problem can be solved. Among these meth-

ods, the Analytic Hierarchy Process (AHP) method is widely accepted by

researchers. The AHP decomposes the decision problem into a hierarchy of

sub-problems. Then the decision-maker evaluates the relative importance of

its various elements by pairwise comparisons. The AHP converts these evalu-

ations to numerical values (weights or priorities), which are used to calculate

a score for each alternative [130, 131].

In future research, together with the MPO approach described in the pre-

vious section, we will extend our algorithms and systems to deal with multiple

criteria instead of just accuracy.

6.1.5 Interactive Learning

Adding the ability to supply user knowledge is another direction for speeding

up the Full Model Selection search described in Chapter 5. For example, the

GPS algorithm could present to the end-user a list of solutions during the

search, so the end-user decides which solutions to include for further search in

order to reduce the search space.

6.1.6 Ensembling FMTs

In Section 5, we studied using the Full Model Trees (FMT) algorithm to

speedup the GPS algorithm. Another direction is to combine multiple FMTs
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to form an FMT ensemble to achieve a better performance.

6.1.7 Meta-learning and FMS

A meta-learning system is trained on a meta-dataset (meta-features are based

on a dataset collection). So if the values of meta-features of a new dataset

are outside the ranges of the training meta-dataset, then in this case, meta-

learning may fail because the target distribution is changed (no longer i.i.d).

For example, using a meta-learning system trained on balanced datasets to

predict on imbalanced datasets will reduce the accuracy of the meta-learning

system. Another example is using UCI dataset to predict text dataset.

Therefore, another direction for future work is to combine the two ap-

proaches proposed in this thesis. For instance, meta-learning-based algorithm

and parameter ranking can be used for generating the initial population of the

meta-heuristic search-based FMS approach.

Together with the models described in [143], the techniques proposed in

this thesis could also be used to model and predict/rank data mining solutions

by their runtime of training or prediction stage. The final Meta-learning plus

FMS hybrid system would be able to suggest an optimal data mining solution

with detailed algorithm and parameter and runtime recommendation.

6.2 Contributions

This research has led to general contributions to the field of data mining and

machine learning. Next, we summarize the main contributions of this thesis.

• We proposed a novel meta-feature generation method for meta-learning-

based algorithm ranking, which simultaneously improves the predictive

performances of different meta-learners (Chapter 3).

• We proposed a new meta-learner called Approximate Ranking Tree Forests
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(ART forests) that performs very competitively when compared with

several state-of-the-art meta-learners. We present both theoretical and

empirical contributions (Chapter 3).

• We also proposed a new experimental configuration that is more realistic

for applications of meta-learning. We also present a default algorithm

ranking list of 20 machine learning algorithms based on their optimized

performances over 466 datasets (Chapter 3).

• We proposed a new ensemble learning algorithm for classification, re-

gression and ranking with extensive empirical evaluation and theoretical

analysis. We also provided two meta-learning case studies for testing the

predictive performance of the new ensemble strategy (Chapter 4).

• We proposed a framework which can be used for designing new FMS (full

model selection) algorithms in terms of the DMO space (Chapter 5).

• We proposed a novel FMS algorithm (called GPS) which can be seen as

a realization and an application of the proposed DMO framework. Our

experiments on real-world problems show that the proposed algorithm

performs very competitively with PSMS, the state-of-the-art PSO-based

FMS algorithm (Chapter 5).

• We examined the feasibility of using the model tree idea for speeding

up the GPS algorithm. Our experimental results suggest that using

the perfect binary tree as the internal tree structure for GPS-based Full

Model Tree is a viable approach when the empirical training complexity

of GPS is worse than linear (Chapter 5).

This thesis presents research results from two approaches, namely the meta-

learning-based algorithm/parameter recommendation approach and the meta-

heuristic search-based Full Model Selection (FMS) approach, both of which
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propose systematic and efficient solutions to the problem of data mining tool

recommendation.

The main difference between the two approaches is due to the time required

for making a useful recommendation. By contrast, the FMS approach does

not suffer the “unknown” data characteristics issue since the candidate models

and solutions are evaluated directly on a target dataset. However, it can

be much slower than meta-learning in terms of making a recommendation.

Therefore, when fast recommendation is essential, the meta-learning approach

is recommended; whereas when meta-learning’s recommendation is not good

enough, the FMS is a reasonable alternative.

Potentially, the new techniques, algorithms and methods proposed in this

thesis can be used as building blocks in a data mining recommendation engine

for a given data problem.
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