Towards a Framework for Designing Full Model Selection and Optimization Systems

Quan Sun, Bernhard Pfahringer and Michael Mayo

Machine Learning Group Department of Computer Science The University of Waikato, New Zealand

May 16, 2013

End-users of ML/DM now have to face the new problem of how to choose a combination of data processing tools and algorithms.

This problem is usually termed the Full Model Selection problem.

The FMS problem consists of the following¹:

Given a pool of preprocessing methods, feature selection and learning algorithms, select the combination of these that obtains the lowest classification error for a given data set.

FMS tasks also include the selection of hyperparameters for the considered methods, resulting in a vast search space.

 $^{-1}$ Escalante et al., Particle Swarm Model Selection. JMLR (2009) \leftarrow

We attempt to define a search space that consists of all data mining actions (operators) that are available to a given data set for a user-specified goal, such as:

- a set of outlier filters
- a set of feature generation, transformation and selection methods
- a set of learning algorithms

• ...

In this sense, we call the subject of interest "the space of data mining operators (DMO)", or simply "the DMO space".

The DMO Space

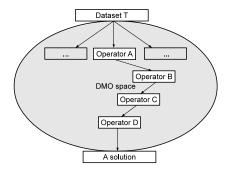


Figure: An illustration of the DMO space

Due to the resources at hand, usually we do not search in an infinite DMO space, and, moreover, we can make the DMO space a finite space by defining the DMOs that are to be included.

- The PSMS system (Escalante et al., JMLR, 2009) is an application of Particle Swarm Optimization (PSO) to the problem of FMS for binary classification problems.
- In total, 3 feature transformation objects, 13 feature selection objects and 10 classifier objects are used in the PSMS system.
- A full PSMS model is defined as a 16-dimensional particle position.

From the system architecture point of view, PSMS assumes a full model has three components: feature transformation, feature selection, and learning algorithm.

In the DMO framework, we can define the following DMO template for the search space covered by the PSMS system:

 $\begin{array}{ll} \textit{solution} & & \textit{DMO}_{\textit{chain-search}}(\\ & \textit{DMO}_{\textit{random-topology-search}}(\textit{DMO}_{\textit{[feature-transformation]}},\textit{DMO}_{\textit{[feature-selection]}}),\\ & \textit{DMO}_{\textit{[algorithm]}}) \end{array}$

We propose a search strategy, which combines both a genetic algorithm (GA) and particle swarm optimization (PSO).

- GA is used for searching the optimal template structure of a DMO solution (structure space)
- PSO is used for searching the optimal parameter set for a particular solution instance (parameter space)

The algorithm is named GPS (**G**A-**P**SO FM**S**). It can be seen as a realization and an application of the DMO framework.

We assume a FMS solution consists of five DMOs: $DMO_{[data-cleansing]}, DMO_{[data-sampling]}, DMO_{[feature-transformation]}, DMO_{[feature-selection]}, and DMO_{[algorithm]}.$

A DMO template for the FMS problem covered by GPS is defined as:

```
 \begin{array}{l} \mbox{solution} & \longleftarrow \\ DMO_{chain-search}(\\ DMO_{random-topology-search}(\\ DMO_{[data-cleansing]}, DMO_{[data-sampling]},\\ DMO_{[feature-transformation]}, DMO_{[feature-selection]}),\\ DMO_{[algorithm]}) \end{array}
```

The GPS Search Strategy

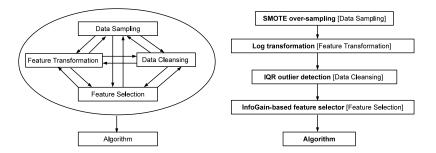


Figure: Left: a graphical representation of the DMO template used by GPS; Right: a DMO solution instance

3

イロト イポト イヨト イヨト

Algorithm 1 Pseudocode of the GPS strategy for searching a FMS solution

procedure GPS(T,P,M,W,G)Generate initial solution Input: structures and instances T (number of generations for GA), P (population size for GA), M (number of evolutions for PSO), W (swarm size for PSO), G (goal metric) Optimize a Get P random template instances based on template (3). solution instance Populate template instances with objects in the DMO pools (Table 2) for $i \leftarrow 1$ to T do Use a standard PSO procedure PSO(M,W,G,I) to search for the optimal Generate new solution parameters for each template instance I (optimising the goal metric G), and assign structures and instances an evaluation score to each template instance I. This procedure is similar to the PSMS system [3]. Do crossover // single point crossover among the top 20% template instances. Do mutation // randomly choose 30% template instances from the population, and randomly change one DMO in each template instance. Replace the worst N template instances with the N new template instances generated in above two steps, here we use $N = (20\% + 30\%) \times P$. $solution_{best} \leftarrow population_{best}$ end for return solutionhest

Multiple Classifier Systems (2013)

end procedure

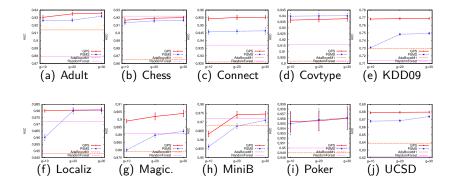
< ∃ ►

- Comparing GPS to PSMS and other algorithms
- Speeding up the GPS system

Original data sets			Final binary data sets
Data set with release year	#Insts	Atts:Classes	Class distribution (#Insts)
Adult 96	48,842	14:2	23% vs 77% (10,000)
Chess 94	28,056	6:18	48% vs 52% (8,747)
Connect-4 95	67,557	42:3	26% vs 74% (10,000)
Covtype 98	581,012	54:7	43% vs 57% (10,000)
KDD09 Customer Churn 09	50,000	190:2	8% vs 92% (10,000)
Localization Person Activity 10	164,860	8:11	37% vs 63% (10,000)
MAGIC Gamma Telescope 07	19,020	11:2	35% vs 65% (10,000)
MiniBooNE Particle 10	130,065	50:2	28% vs 72% (10,000)
Poker Hand 07	1,025,010	11:10	45% vs 55% (10,000)
UCSD FICO Contest 10	130,475	334:2	9% vs 91% (10,000)

æ

Experiment 1: Comparing GPS to PSMS



- GPS wins in 83% (25 out of 30) evaluation setups (benefit of combining GA and PSO for the FMS problem)
- The best performance of both GPS and PSMS outperform AdaBoost. and RF on 9 datasets (advantage of a full model over the single algorithm model)
- GPS outperforms the baseline algorithms with big margin on imbalanced datasets

Some observations

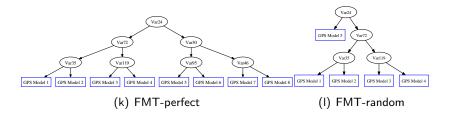
- The training complexity of the GPS algorithm depends on the base learners found and evaluated during the search.
- The main cost for GPS is the cost for estimating a base learner's performance (e.g., cross-validation).

Users may have to wait for several hours, or even days on relatively large data sets. Therefore, in this work we also present a strategy for speeding up the GPS algorithm.

Full Model Trees (FMT):

Instead of training the GPS algorithm on the full training data, we build GPS models at the leaves of a tree structure.

Experiment 2: Speeding Up the GPS System



We compare GPS to Full Model Tree with two different tree structures, namely, the perfect binary tree and the random binary tree.

Theoretically (theorem 1 and 2, pp. 9-10), the two Full Model Tree variants are faster than GPS-0 in the case that the (empirical) training complexity of GPS-0 is worse than linear.

Table: Performance and runtime of the GPS and the Full Model Tree algorithms; A " \ominus " indicates that in terms of AUC, the GPS algorithm is significantly better than the respective algorithm; A " \Diamond " indicates that in terms of runtime, the GPS algorithm is significantly slower than the respective algorithm

Dataset	GPS	FMT-perf.	FMT-rand.	GPS	FMT-perf.	FMT-rand.	
	AUC			Runtime (mins)			
Adult	0.94	0.93	0.93 🖯	45 ± 6	37 ± 4 \Diamond	48 ± 11	
Connect-4.	0.95	0.95	0.95 ⊖	91 ± 5	77 ± 9 \diamond	74 \pm 14 \Diamond	
KDD Cup.	0.77	0.77	0.76 ⊖	178 ± 9	157 ± 11 \Diamond	189 ± 8	
Mini.B.E.	0.98	0.98 🖯	0.97 ⊖	124 ± 7	123 ± 9	135 ± 12	
UCSD.	0.68	0.68 ⊖	0.67 ⊖	487 ± 16	417 \pm 19 \Diamond	476 ± 17	

- The DMO framework for designing new FMS algorithms
- The GPS algorithm for FMS
- Speeding up GPS with the perfect-binary-tree structure

Load a Data Set	/Users/quan/balance-	scale.arff				Star
Output			Option	ns		
Relation Na Num Instanc Num Attribu Name 1 left-w 2 left-d	es: 625 ites: 5 reight	-weka.filters.uns Type Nom Int Num 0% 100% Num 0% 100%	Real Subsan	metric AUC Fest percentage split en npling percentage	valuation 50	ased subsampling)
olutionID	DMO1>	DMO2>	DMO3>	DMO4>	DMO5 (Algorithm)	Estimated Metric
0-8868642	NumericCleaner	SMOTE	Discretize		Bagging]48	0.98175280250
)-5494782	Resample			AttributeSelection	AdaBoostM1Def	0.97215525057
-9706480	SMOTE	ReplaceMissingVal	Standardize		RandomForestDef	0.96875
-3823928	AddNoise		SMOTE	NumericCleaner	RotationForestRan	0.95919366139
-6987533	AttributeSelection	SMOTE	Center	Resample	RandomForestDef	0.95831272667
	Resample			Center	DecorateJ48	0.92976735080
-6171982				AttributeSelection	BaggingREPTree	0.80782743982
-4604437	NominalToBinary					
-4604437	Resample			AttributeSelection	AdaBoostM1Def	0.80692074678
0-6171982 0-4604437 0-2965815 0-102648	Resample ReplaceMissingVal		AttributeSelection	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085
-4604437	Resample ReplaceMissingVal NumericCleaner	SMOTE	Resample	AttributeSelection	AdaBoostM1Def RandomForestDef	
-4604437 -2965815 -102648	Resample ReplaceMissingVal NumericCleaner	SMOTE Solution as Weka Class	Resample	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085
-4604437 -2965815 -102648	Resample ReplaceMissingVal NumericCleaner Save	SMOTE	Resample ifier Object	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085
-4604437 -2965815 -102648	Resample ReplaceMissingVal NumericCleaner Save Fine	SMOTE Solution as Weka Class	Resample ifier Object	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085
-4604437 -2965815 -102648	Resample ReplaceMissingVal NumericCleaner Save Fine Show	SMOTE Solution as Weka Class Tune Solution Parameter / Solution ROC Curve	Resample ifier Object ers	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085
-4604437 -2965815 -102648	Resample ReplaceMissingVal NumericCleaner Save Fine Show Estin	SMOTE Solution as Weka Class Tune Solution Paramete	Resample ifier Object ers y (Runtime Cost)	AttributeSelection NumericCleaner	AdaBoostM1Def RandomForestDef	0.80461280085

Figure: A proof-of-concept system based on the DMO framework using the GPS algorithm as the optimisation engine.

< □ > < 同 > < 三</p>

э

Thank you :-)

< ∃⇒

Image: A mathematical states and a mathem