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Full Model Selection (FMS)

The FMS problem consists of the following?:

Given a pool of preprocessing methods, feature selection and learning
algorithms, select the combination of these that obtains the lowest
classification error for a given data set.

FMS tasks also include the selection of hyperparameters for the considered
methods, resulting in a vast search space.

!Escalante et al., Particle Swarm Model Selection. JMLR (2009)
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Data Mining Operators

We attempt to define a search space that consists of all data mining
actions (operators) that are available to a given data set for a
user-specified goal, such as:

a set of outlier filters

°
@ a set of feature generation, transformation and selection methods
@ a set of learning algorithms

°

In this sense, we call the subject of interest “the space of data mining
operators (DMO)", or simply “the DMO space”.
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Figure: An illustration of the DMO space

Due to the resources at hand, usually we do not search in an infinite DMO
space, and, moreover, we can make the DMO space a finite space by
defining the DMOs that are to be included.
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Related Work - The PSMS System

@ The PSMS system (Escalante et al., JMLR, 2009) is an application of
Particle Swarm Optimization (PSO) to the problem of FMS for binary
classification problems.

@ In total, 3 feature transformation objects, 13 feature selection objects
and 10 classifier objects are used in the PSMS system.

@ A full PSMS model is defined as a 16-dimensional particle position.
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Related Work - The PSMS System

From the system architecture point of view, PSMS assumes a full model
has three components: feature transformation, feature selection, and
learning algorithm.

In the DMO framework, we can define the following DMO template for the
search space covered by the PSMS system:

solution <— DMOchainfsearch(

DMO:yandom— topology —search ( DM O[featuref transformation)» DM O[fea ture—selection] ) )
DM O[a/gorithm] )
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The GPS Search Strategy

We propose a search strategy, which combines both a genetic algorithm
(GA) and particle swarm optimization (PSO).

@ GA is used for searching the optimal template structure of a DMO
solution (structure space)

@ PSO is used for searching the optimal parameter set for a particular
solution instance (parameter space)

The algorithm is named GPS (GA-PSO FMS). It can be seen as a
realization and an application of the DMO framework.
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The GPS Search Strategy

We assume a FMS solution consists of five DMOs:

DM O[dataf cleansing]» DM O[datafsampling] , DM O[featuref transformation]
DMO[feature—selection] , and DMO[algorithm] .

A DMO template for the FMS problem covered by GPS is defined as:

solution <=
DMOchain—search(
DM Orandomf topology —search (
DMO[data— cleansing]» DMO[data—sampIing] )

DM O[featuref transformation)> DM O[ feature—selection] ) )

DMO[aIgorithm] )
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The GPS Search Strate

| SMOTE over-sampling [Data Sampling] |

AN

1 r
|Feature Transformation ! ! Data Cleansing |

Feature Selection l
| in-based feature [Feature Selection] |

Figure: Left: a graphical representation of the DMO template used by GPS;
Right: a DMO solution instance

| Log transformation [Feature Transformation] |

l

| IQR outlier detection [Data Cleansing] |
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The GPS Algorithm

Algorithm 1 Pseudocode of the GPS strategy for searching a FMS solution
procedure GPS(T,P,M,W,G)
Input:
T (number of generations for GA), P (population size for GA), M (number of
evolutions for PSO), W (swarm size for PSO), G (goal metric)

Generate initial solution
structures and instances

Optimize a

Get P random template instances based on template (3). pumi
solution instance

Populate template instances with objects in the DMO pools (Table 2)
for i+ 1to T do
Use a standard PSO procedure PSO(M,W,G,I) to search for the optimal
parameters for each template instance I (optimising the goal metric G), and assign
an evaluation score to each template instance I. This procedure is similar to the
PSMS system [3].
Do crossover // single point crossover among the top 20% template instances.
Do mutation // randomly choose 30% template instances from the popula-
tion, and randomly change one DMO in each template instance.
Replace the worst N template instances with the N new template instances
generated in above two steps, here we use N = (20% + 30%) x P .
solutionpest + populationpes
end for
return solutionpest
end procedure

Generate new solution
structures and instances
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@ Comparing GPS to PSMS and other algorithms
@ Speeding up the GPS system
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Experiments: Datasets

Original data sets Final binary data sets
Data set with release year #lInsts  Atts:Classes || Class distribution (#lInsts)
Adult 96 48,842 14:2 23% vs 77% (10,000)

Chess 94 28,056 6:18 48% vs 52% (8,747)
Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDDO09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)
MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)
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Experiment 1:

Comparing GPS to PSMS
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Experiment 2: Speeding Up the GPS System

Some observations

@ The training complexity of the GPS algorithm depends on the base
learners found and evaluated during the search.

@ The main cost for GPS is the cost for estimating a base learner’s
performance (e.g., cross-validation).

Users may have to wait for several hours, or even days on relatively large
data sets. Therefore, in this work we also present a strategy for speeding
up the GPS algorithm.
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Experiment 2: Speeding Up the GPS System

Full Model Trees (FMT):

Instead of training the GPS algorithm on the full training data, we build
GPS models at the leaves of a tree structure.
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Experiment 2: Speeding Up the GPS System

- _— >
GPS Model | ‘ ‘GPS Mndcll‘ ‘GPS Model z‘ ‘GPS Modcm‘ ‘GPS MndclS‘ ‘GPS Modclﬁ‘ ‘GPS Modcl7‘ ‘GPS Model 8 H GPS Model | ‘ ‘GPS Model 2 ‘ ‘GYS Model 3 ‘ ‘ GPS Model 4 ‘
(k) FMT-perfect (I) FMT-random

We compare GPS to Full Model Tree with two different tree structures,
namely, the perfect binary tree and the random binary tree.
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Experiment 2: Speeding Up the GPS System

Theoretically (theorem 1 and 2, pp. 9-10), the two Full Model Tree
variants are faster than GPS-0 in the case that the (empirical) training
complexity of GPS-0 is worse than linear.
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Experiment 2: Speeding Up the

Table: Performance and runtime of the GPS and the Full Model Tree algorithms;
A "©" indicates that in terms of AUC, the GPS algorithm is significantly better
than the respective algorithm; A “{" indicates that in terms of runtime, the GPS
algorithm is significantly slower than the respective algorithm

Dataset GPS [ FMT-perf. [ FMT-rand. GPS [ FMT-perf. [ FMT-rand.
AUC Runtime (mins)

Adult 0.94 | 0.93 0.93 & 45+ 6 37+4¢ | 48+11

Connect-4. 0.95 | 0.95 0.95 91 £ 5 7790 | 74+ 140

KDD Cup. 0.77 | 0.77 0.76 © 178 £ 9 157 + 11 ¢ | 189 + 8

Mini.B.E. 0.98 | 0.98 © 0.97 © 124 + 7 123 + 9 135 + 12

UCSD. 0.68 | 0.68 © 0.67 © 487 £ 16 | 417 £ 19 O | 476 + 17
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@ The DMO framework for designing new FMS algorithms
@ The GPS algorithm for FMS
@ Speeding up GPS with the perfect-binary-tree structure
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A GUI for FMS

Fantail 0.1 |
Load a Data Set | /Users/quan/balance-scale.arff start |
Output Options |

balance-scale-weka.filte Target metric [AUC v
625 Train/Test percentage split evaluation | 50 |
percentage 0100 %
Nane
left-weight Use smart subsampling (Izarning curve approx.-based subsampling)
ft-distance S
More Options ... | !

SolutionD [DMO1 ---> | DMO3 -=-> | DMO4 ---> | DMOS (Algorithm) | Estimated Metric...

0-8868642 NumericCleaner  SMOTE Discretize Bagging48 0.98175280250...

0-5494782 Resample AributeSelecton  AdaBoostM1Def 097215525057

0-9706480 SMOTE ReplaceMissingVal... Sandardize RandomForestDef 096875

0-3823928 AddNoise SMOTE NumericCleaner  RotationForestRan... 0.95919366139

0-6987533 AttributeSelection  SMOTE Center Resample RandomForestDef 095831272667

0-6171982 Resample Center Decorate)48 0.92976735080... ||

0-4604437 NorminaiToBinary AtributeSelection  BaggingREPTree  0.80782743982

0-2965815 Resample 0.

0-102648 ReplaceMissingVal.. Auributeselection  NumericCleaner __ RandomForestDef _0.80461280085

NumericCleaner i

Decorate48 074962392845
save Solution as Weka Classifier Object

Fine Tune Solution Parameters

Show Solution ROC Curve

Estimate Solution Complexity (Runtime Cos)
Estimate Solution Complexity (Memory Cost)

Figure: A proof-of-concept system based on the DMO framework using the GPS
algorithm as the optimisation engine.
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Thank you :-)
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