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Metalearning

Metalearning is usually explained as “learning to learn”.
In this paper, the term is used in the sense of “metalearning for

algorithm ranking or recommendation”.
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A Successful Metalearning System

Metalearning tries to support and automate algorithm selection, by
generating meta-knowledge mapping the properties of a dataset to
the relative performances of algorithms.
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The Metalearning Task

The basic steps of building a metalearning system:

1 collect a set of datasets
2 define some meta-features of each dataset, e.g., the #. of instances,

the #. of numeric or categorical features...
Existing meta-learning systems are mainly based on three types of meta-features:

statistical, information-theoretic and landmarking-based meta-features, or SIL for short.

3 estimate the predictive performance of the available algorithms (eg,
CV), for every dataset in the dataset collection
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Meta-Dataset

Given the above information, we can construct a meta-dataset:
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For algorithm ranking, our goal is to predict the relative performance between
algorithms. Thus, the (raw) meta-dataset can be transformed to represent the
rankings of the algorithms.
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Meta-Dataset cont’d
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Metalearning Approaches

The k-Nearest Neighbors approach
The pairwise classification approach
The learning to rank approach
The label ranking approach
The single/multi-target regression approach
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Three Contributions

Pairwise Meta-Rules (a new meta-feature generator)
Approximate Ranking Tree Forests (a new meta-learner)
Parameter-Optimisation-Based Ranking Generation (a new
experimental configuration)
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Pairwise Meta-Rules (PMR)

Explicitly adding the logical pairwise information between each pair of
the target algorithms to the meta-feature space might improve a
meta-learner’s predictive accuracy.
We propose to use a rule learner to learn pairwise rules first, and then
use these rules as new meta-features.
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Pairwise Meta-Rules: Step 1

Construct a binary classification dataset for each algorithm pair. Each
binary dataset (i , j pair, i < j) has two class labels:
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In total, there are m◊(m≠1)
2

(m is the #. of target algorithms) binary
classification datasets.
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Pairwise Meta-Rules: Step 2

Build a RIPPER rule model for each of the m◊(m≠1)
2

binary datasets.
Add meta-rules in each RIPPER model as new meta-features to the
original feature space

xx

A RIPPER rule model for SGD vs. Naive Bayes may look like:
xxIf ObliviouTree.depth2.AUC Æ 0.55 AND MaxNominalFeatureDistinctValues Æ 7

xxxxThen SGD is better;

xxIf REPTree.depth2.AUC Æ 0.53 AND RandomTree.depth2.AUC Æ 0.51

xxxxThen SGD is better;

xxOtherwise Naive Bayes is better.
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Pairwise Meta-Rules (PMR)
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Approximate Ranking Tree Forests (ART Forests)

Base-level + PMR meta-features © a high-dimensional feature space
We need a meta-learner that can handle the feature space e�ciently
ART Forests: an ensemble of random Approximate Ranking Trees
using the random forests framework
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The Approximate Ranking Trees (ART) Algorithm

Input:

D (training data);
u (number of features to test when splitting, default log

2

M+1, M is the #. of
features)
C (splitting and stopping criterions, details are given in the paper)

bestSplit Ω Randomly choose u features and test them based on the splitting
criterion C . Use the best feature among the u features.
if stopping criterion is met

return a leaf node with the corresponding leaf ranking.
else

leftSubtree Ω ART(D+
bestSplit , u, C)

rightSubtree Ω ART(D≠
bestSplit , u, C)

return (bestSplit, leftSubtree, rightSubtree)
end if
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ART’s Splitting Criterion
In the ART algorithm, we use the median value of a meta-feature’s range
as the binary split point to split the data D, the current partition, into two
sub-partitions D

+ and D

≠. The best split point is determined to be the
one that maximises the R

2 statistic:
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where L is the number of partitions, and n

(l) is the number of examples in
partition l . R

2 is originally designed to measure the proportion of the
spread explained by the di�erences between the two partitions.
In the paper, we showed that R

2 can be computed e�ciently:
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where h =
m(m + 1)(2m + 1)

3 .
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Grow an ART forest using the Random Forests Framework

Input:

T (number of ART to use)
D (training data);
u (number of features to test when splitting, default log

2

M+1)
C (splitting and stopping criterions, details are given in the paper)

ARTensemble Ω ÿ
for i = 1 to T

Di Ω getBootstrapSample(D)

ARTi Ω ART(Di , u, C)
ARTensemble Ω ARTensemble fi ARTi

end for

return ARTensemble
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Parameter-Optimisation-Based Ranking Generation

Many previous meta-learning experiments have estimated algorithm
performance using default parameter settings
xxx
This approach is bound to be suboptimal. In practice, most algorithms need
to be optimised separately for each specific dataset.
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Parameter-Optimisation-Based Ranking Generation

Figure: Percentage of improvement of the best AUC performance among 20
parameter-optimised algorithms for 466 datasets over the same 20 algorithm
using their default parameters.
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Parameter-Optimisation-Based Ranking Generation

At the meta-dataset generation stage. We assume that a procedure is
available for optimising each algorithm for each dataset, and then predict
the ranking of the optimised algorithms.
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Experimental Setup: Meta-dataset Construction

rank 20 supervised machine learning algorithms.
466 binary classification datasets.
we manually specify parameters and their respective value ranges for
PSO to optimise. AUC is used as the target metric.
xxxx
We run the 20 algorithms, with PSO-based parameter optimisation,
on the 466 binary classification datasets and use 10-fold
cross-validation based AUC scores for ranking generation.
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Experiments: Evaluation

8 ranking evaluation metrics and functions:
Spearman’s Rank Correlation Coe�cient (SRCC)
Weighted Rank Correlation (WRC)
Loose Accuracy (LA@1, LA@3 and LA@5)
Normalized Discounted Cumulative Gain (NDCG@1, NDCG@3 and NDCG@5)
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Experiments: Meta-learners

7 rankers (meta-learners) are used in experiments:
DefRanker: uses the average rank of each algorithm over all the training data;
returns a fixed ranking
k-NN: an instance-based algorithm
LRT: a label ranking algorithm
RPC: a ranking by pairwise comparison algorithm
PCTR: the predictive clustering trees for ranking algorithm
AdaRank: a learning to rank algorithm based on boosting
ARTForests: the ART Forests algorithm
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Experiments

1 compare meta-feature sets based on k-NN performance curves
2 compare ranking performances of multiple rankers
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Experiment 1: compare meta-feature sets based on k-NN
performance curves

xxx
Three meta-feature sets in comparison, including two PMR-based variants:

SIL-only: 80 SIL meta-features
SIL+Meta-Rule-1: 80 SIL meta-features plus PMR variant 1
SIL+Meta-Rule-2: 80 SIL meta-features plus PMR variant 2
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Experiment 1: compare meta-feature sets based on k-NN
performance curves

Overall, k values between 10 and 20 usually produce relatively good
performance across all eight ranking metrics.
Regarding the choice of meta-feature sets, the SIL+Meta-rules-1 set
outperforms the SIL-only and the SIL+Meta-rules-2 meta-feature sets.

Figure: An example result for the Spearman’s Rank Correlation Coe�cient metric
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Experiment 2: compare ranking performances of multiple
rankers

Overall, all the best ranbkers used the SIL+PMR set
the SIL+PMR set significantly outperformed the SIL set in 79.1% comparision
tests across 7 rankers
ART Forests with the SIL+PMR set consistently produces positive performance
gains for all 8 metrics
ART Forests is placed as the best ranker for 7 out of 8 metrics

Figure: An example result for the Spearman’s Rank Correlation Coe�cient metric
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Conclusions

Pairwise Meta-Rules for meta-learning
ART Forests for modelling and predicting rankings (can also be used for label
ranking problems)
Parameter-Optimisation-based meta-dataset generation
The Art Forests software, source code and dataset can be downloaded from:
http://www.cs.waikato.ac.nz/~qs12/ml/meta/

(poster stand #76)

Thank you :-)
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