
PairwiseMeta-Rulesfor

BetterMeta-Learning-basedAlgorithmRanking

Quan Sun and Bernhard Pfahringer, Department of Computer Science, The University of Waikato, New Zealand

{qs12, bernhard}@cs.waikato.ac.nz

Meta-Learning Introduction

• Meta-learning is a rich field, usually explained as “learning to learn”. In this paper, the term is used
in the sense of “meta-learning for algorithm ranking or recommendation”.

• When choosing an algorithm for a given dataset, simply optimising all known learning algorithms is
usually not feasible under strict time constraints.

• Meta-learning tries to support and automate this process. Meta-learning generates meta-knowledge
mapping the properties of a dataset, captured by meta-features, to the relative performances of the
available algorithms.

A meta-learning system

The basic steps of building a meta-learning system:

1. collect a set of datasets

2. define some meta-features of each dataset, e.g.,
the #. of instances, the #. of numeric or cate-
gorical features... Existing meta-learning sys-
tems are mainly based on three types of meta-
features: statistical, information-theoretic and
landmarking-based meta-features, or SIL for
short.

3. estimate the predictive performance of the
available algorithms (eg, CV), for every
dataset in the dataset collection

Pairwise Meta-Rules (PMR)

1. Construct a binary classification dataset
for each algorithm pair. Each binary
dataset (i, j pair, i < j) has two class la-

bels. In total, there are m⇥(m�1)
2 (m is the

#. of target algorithms) binary classifica-
tion datasets.
2. Build a RIPPER rule model for each of
the m⇥(m�1)

2 binary datasets.
3. Add meta-rules in each RIPPER model
as new meta-features to the original meta-
feature space.

Additional materials

The ART Forests software can be downloaded at:

http://www.cs.waikato.ac.nz/~qs12/ml/meta/

Meta-Dataset

For algorithm ranking/recommendation, our goal is
to predict the relative performance between algo-
rithms. Thus, the (raw) meta-dataset can be trans-
formed to represent the rankings of the algorithms.

M =

0

@

f1 f2 f3 C4.5 SVM k-NN

d1 100 0.52 �1.0 0.85 0.86 0.77
d2 300 0.45 2.0 0.55 0.52 0.70
d3 450 0.77 1.5 0.71 0.83 0.69

1

A

M

⇤ = transform(M) =)

0

@

f1 f2 f3 C4.5 SVM k-NN

d1 100 0.52 �1.0 2 1 3
d2 300 0.45 2.0 2 3 1
d3 450 0.77 1.5 2 1 3

1

A

Experiments and Results

In this paper, meta-learning is used to rank 20 supervised machine learning algorithms over 466 datasets.
When generating algorithm rankings from the 466 datasets, for each of the 20 algorithms, we manually
specify parameters and their respective value ranges for PSO to optimise. AUC is used as the target metric.
We run the 20 algorithms, with PSO-based parameter optimisation, on 466 binary classification datasets
and use 10-fold cross-validation based AUC scores for ranking generation.
Comparison of meta-feature sets based on k-NN performance curves We compared 3 meta-feature
sets, including two PMR-based variants.

Overall, k values between 10 and 20 usually produce relatively good performance across all eight ranking
metrics. Regarding the choice of meta-feature sets, the SIL+Meta-rules-1 set outperforms the SIL-only and
the SIL+Meta-rules-2 meta-feature sets.
Comparison of ranking performances of multiple rankers 7 meta-learners are used in experiments:

Overall, the ART Forests ranker with the SIL+Meta-rules set consistently produces performance gains for
all di↵erent metrics, and is placed as the best ranker for 7 out of 8 metrics.

ART’s Splitting Criterion

In the ART algorithm, we use the median value of
a meta-feature’s range as the binary split point to
split the data D, the current partition, into two sub-
partitions D+ and D

�. The best split point is deter-
mined to be the one that maximises the R2 statistic:

R

2 = 1�
PL

l=1

Pn(l)

i=1 dSpearman(y
(li)

, ẑ

(l))
PL

l=1

Pn(l)

i=1 dSpearman(y(li), ẑ(D))
, (1)

where L is the number of partitions, and n

(l) is the
number of examples in partition l. R

2 is originally
designed to measure the proportion of the spread
explained by the di↵erences between the two par-
titions. In the paper, we showed that R

2 can be
computed e�ciently:

R2 = 1 �
n(D+)(h � 2||ȳ(D+)||2) + n(D�)(h � 2||ȳ(D�)||2)

n(D)(h � 2||ȳ(D)||2)
,

(2)

where h =
m(m+ 1)(2m+ 1)

3
.

ART Forests

Input:

T (number of ART to use)
D (training data);
u (number of features to use, default log2M+1)
C (splitting and stopping criterions, details are

given in the paper)

ARTensemble ;
for i = 1 to T

Di getBootstrapSample(D)

ARTi ART(Di, u, C)
ARTensemble ARTensemble [ARTi

end for

return ARTensemble

