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Abstract—Clinical narratives host vast accumulations of pa-
tient data pivotal for research and development of health related
products. In order for this data to be utilized, the underlying
protected health information needs to be de-identified to ensure
medical confidentiality. Given the voluminous size of clinical
texts, manual de-identification of such large datasets is both
expensive and impractical. Therefore, the concept of automated
de-identification is a highly appealing prospect. Machine learning
or model based sequential labeling algorithms, such as the
named entity recognition algorithms and rule-based algorithms
are among the most effective approaches to automated de-
identification. A natural question to ask is how we can combine
them to have the best of both worlds. In this paper, we present
an analytical and easy to interpret framework to dynamically
combine a sequential labeling model and a soft-rule-based model
in an incremental learning setup. This framework is applied to
a case study, which is part of a project prototyping automated
de-identification system for New Zealand clinical free text data.
Evaluations show that our approach can accommodate changes
in the incoming data through dynamic updating. The simplicity
of the framework also allowed us to gain insights on behaviour
e.g. change of importance between the machine learning and rule
models.

Index Terms—Incremental Learning, Ensemble Learning, De-
identification, Data Privacy

I. INTRODUCTION

In the contemporary age, as health related services have
progressed, the vast accumulation of patient data is preserved
in the form electronic health records (EHRs). The pervasive
amounts of protected health information (PHI) within EHRs
undermine their ability to be utilised in down-stream appli-
cations such as research and development. To maximise their
utility, PHIs within EHRs are required to be de-identified such
that patients cannot be re-identified from the data. The manual
process de-identification is prohibitively time consuming and
uneconomic, hence, entailing the need for automated de-
identification. While during the course of PHI identification for
removal, it is highly necessary for a de-identification process
to retain the medical contents of the records so that this
information can help further research and conserve the value
of the record.

Developing data science capacity for applications in health-
care requires extra consideration with regard to data privacy.

The data, usually in the form of structured databases, text
documents, images, needed for building an analytical system
or predictive model is not allowed to be used directly until
a sophisticated de-identification has been applied or unitl
individual consents of patients are obtained. Sometimes, both
are required. Taking a natural language processing (NLP)
project as an example, the de-identification process of the
training (text) data usually involves recruiting annotators with
medical background to identify PHI, which is time consuming
and expensive. Once the data is de-identified and its re-
identification risk is reviewed. The data may be released to
be used in downstream research and development. The whole
re-identification process can take weeks or months depending
upon the size of the data.

In recent years, the demand for an automated de-
identification system is increasing, at the same time, machine
learning based NLP techniques have improved substantially,
e.g. named entity recognition (NER) algorithms developed for
sequential labeling tasks, achieved tremendous accuracy in
terms of detecting entities in free text data. However, accuracy
of a NER model built on one dataset, is expected to decline on
another dataset in a different domain. For instance, one could
build a NER model with a publicly available dataset, e.g. the
i2b2 clinical dataset [1], but the performance is expected to
decline if the model is used for making predictions on a New
Zealand clinical dataset.

The main reasons attributing to performance deterioration
are domain drift and lack of localisation. There is no guarantee
that the pre-built model would work equally well, in terms of
both accuracy and re-identification risk on a new dataset as
they do not share a reasonable amount language level proper-
ties [2]. Localisation is another issue, where local vocabulary
can never be learned if they were not in the original training
data. One approach to overcome the above issues is using
transfer learning [3], [4]. In this learning paradigm, models
built on one dataset can be updated (re-trained) using some
new data from the target dataset/domain. However, transfer
learning may still require a significant amount of new data to
be able to adapt to new concepts/entities.

In this research, we discuss the outlined challenges by



proposing a simple framework for dynamically combining
machine learning and rule-based models in an incremental
(online) learning setup, which can be seen as a complement to
conventional transfer learning given a relatively small amount
of new data. The learning model is used in a case study of
developing a de-identification system, where the goal is to help
clinicians to detect PHI in free text data more easily.

We propose to form an ensemble of a pre-trained machine
learning model and a rule-based model. The machine learning
model (pre-trained on a publicly available US dataset) is
expected to work well on the known patterns it has seen
at the semantic level, whereas the rule-based model (to be
built incrementally with new data) will help the localization
issue that the machine learning will suffer, for instance, Māori
names of towns and cities across New Zealand, NZ specified
pre-fix IDs, and special words being used in a hospitals. The
crux is how to combine them in such a way that the system is
able to adjust given the performance of both models on recent
predictions. We discuss the proposed ensemble framework
further in section III.

II. RECENT WORK

The most common approach to de-identification is sequen-
tially evaluating each token to determine the presence of any
protected information. This is in close proximity to named
entity recognition which also focuses on the identification of
pertinent information. By the means of substantial develop-
ments in neighbouring fields such NLP and deep learning, de-
identification has also significantly evolved from relying on
handcrafted rules and semantic dictionaries. Machine learning
approaches to de-identification are more general in the sense,
that they perform better in identifying PHI’s not included
in dictionaries. Several machine learning approaches have
proposed including Conditional Random Fields (CRFs) [5]
and its Deep Learning powered variants [6]–[8], Hidden
Markov Models (HMMs) [9] and Support Vector Machines
(SVMs) [10]. As noted through several studies, CRFs are
a prominent approach in identifying PHIs and sequential
labelling tasks in general [11]. CRFs are from a family of
probabilistic graph models which aim to find the conditional
probability of an output vector (labels) given an input vector
of observed data. The conditional nature of CRFs provide a
theoretical advantage over other probabilistic graph models
such as HMMs which assume feature independence. Empirical
testing in de-identification tasks have also shown that CRFs
generally out-perform other approaches [12]. A critical step
in developing machine learning methods for de-identification
is the extraction of linguistic/lexical features which represent
a word through several binary, nominal or numeric values.
Lexical features include part of speech tags, prefixes, suffixes,
lowercase token for each word etc. Other, orthographic fea-
tures such as the shape and length of tokens, whether the token
contains digits or letters are also often considered.

Recent deep learning methods have shown remarkable de-
identification ability without requiring manually crafted fea-
tures. A key attribute to this impressive break-through is the

distributed representation of words through word embedding
algorithms. Word embedding techniques provide individual
representations of words as dense real valued vectors asso-
ciated with specific points in a vector space. Such represen-
tations of features, mitigate the need of human intervention
for manual feature engineering and extraction. The first de-
identification system based on deep learning using word em-
bedding showed state-of-the-art results on the de-identification
of i2b2 2014 and the MIMIC datasets, outperforming the
previous benchmark achieved by CRFs [13]. The deep learning
architecture was based on a type of recurrent neural network,
the bi-directional Long Short-Term Memory (LSTMs). More
recent work, has evaluated this approach in a cross-institute
setting where models trained on the i2b2 corpus were tested
on other corpuses after merging data and fine-tuning models
[14].

Combining outputs from different de-identification algo-
rithms is an attractive prospect envisioned through ensemble
learning. Admittedly, de-identification literature is still lacking
in studies involving ensemble learning, although recently,
interesting methods have emerged. Most notably, CRF and BI-
LSTMs trained using feature extraction and word embeddings
were combined using a stacking classifier (SVM) [15]. More-
over, rule-based methods were used to directly extract some
identifiers, which were merged into the labelled sequence after
stacking. A recent comparative study has explored ensembles
of multiple de-identification methods including deep learning,
shallow learning and rule-based methods [16]. The ensemble
methods included stacking and voting which consistently
outperformed individual algorithms.

In general terms, incremental learning refers to learning data
as it becomes available in batches. The goal is to confront with
such non-stationary situations through adaptive mechanisms
to accommodate changes in the incoming data. A typical
approach for learning such information involves discarding
the previous classifier and retraining as new data becomes
available. This approach is known as catastrophic forgetting as
previously acquired knowledge is forgotten and the models are
retrained. In contrast, adaptive mechanisms aim to continually
accommodate new data into the trained classifiers. Often
times, this is addressed through adaptability capacity in the
classifiers and adaptability in contribution of each classifier in
an ensemble.

The available literature for adaptive learning in named entity
recognition is quite sparse and virtually non-existent in de-
identification terms. Recent work in NER has utilized incre-
mental learning for updating deep learning models in a active
learning framework [17]. Since the approach involving catas-
trophic forgetting is computationally expensive, new incoming
data was concatenated to the older samples and the models
were retrained for a small number of epochs. Other works, out-
side the domain of natural language processing explore ’multi-
level’ adaptive systems, where incremental learning classifiers
are combined with adaptive ensembles [18]. This is a hybrid
approach where new learners are added over time and the
inefficient existing learners are removed. The outputs of active



learners are combined using weighted voting. This type of
adaptive behaviour allows classification systems to cope with
changing environments and handle concept drift. In the deep
learning field, incremental learning can be achieved through
updating the weights gradually given new data. Common
strategies include external memory, constraints-based methods
and model plasticity [19].

III. INCREMENTAL LEARNING ENSEMBLE FOR DATA
DE-IDENTIFICATION

In this section, we describe the ensemble framework and the
incremental learning setup we used in this research. One goal
of our project was being able to show the power of combining
machine learning and rule based models in a relatively easy
to interpret way. The reason is that in healthcare, we have
cross-disciplinary teams, consisting of computer scientists,
clinicians, software engineers and project managers. So as
a pilot project, we tried to demonstrate the core idea of
ensembling and show the team the potential of more advanced
algorithms.

The generalisation ability of any algorithm is acutely depen-
dent upon the availability of an adequately representative train-
ing set. In de-identification tasks, it is often hard to generalise
the ability of models trained public datasets to smaller, local
datasets. Moreover, the availability of local datasets is irregular
and slow due to manual annotations required for training and
pre-processing. Therefore, it is not unusual for these datasets
to become available in batches over time. Depending upon
the application it may be unfeasible/improvident to wait for
the entire data to become available. Under such circumstances
it is more compelling to start training a system and perform
incremental updates as more data becomes available over time.
It is also possible that the performance of different models
change with respect to newly available data. As such, it
is desirable to develop a system which dynamically adjusts
given new training instances. In this paper, we convey this
idea through combining a machine learning and a soft rule-
based model in an incremental ensemble learning setup. The
approach seeks to find an optimal combination of the two
models at every increment as new training data becomes
available.

A. Application of an Easy to Interpret Linear Ensemble

As a first step in developing the desired approach, we
examine and select a suitable combination function for the
base classifiers. In classification, most combination methods
belong to a family of voting techniques which seek to elect
the most suitable label given predictions from base classifiers.
The most common approach is to take a majority vote,
where every classifier votes for a single class label and final
selected label is the one that received the most votes. In
our case, it is more practical to utilize something called
the soft voting, particularly because our classifiers output k
dimensional vectors of class probabilities for each instance
x, where k is the number of classes. In its plain form, soft
voting generates an output vector by simply averaging all

individual outputs from the base classifiers. In this case, we
consider a more generic combination where each classifier has
some weight, which is to be dynamically adjusted with new
increments. Mathematically, we can represent this idea through
the following linear combination function.

f c(x) = wf1(x) + (1− w)f2(x)

w ∈ [0, 1]
(1)

Where f1 and f2 are the two individual learning algorithms
and w is the associated weight. We have data of the form
D = {(x1, y1), ..., (xn, yn)} ⊂ X × Y , where each xj ∈ Rd

is a vector of attributes and yj ∈ Y is its corresponding
label. f1 and f2 are trained through supervised learning where
we seek to learn the function f : X −→ Y , by minimizing
a certain criterion. Generally, for the range Y , y ∈ Y for
a particular instance xj is a probability vector represented
as f(xj) = [p1, p2...pk], where k is the number of classes.
The reason for selecting a linear form for the combination
function f c, is because we needed an ensemble strategy that
can easily be explained (to the clinicians and developers) and
implemented in a relatively transparent way. Thus, applying
the most advanced ensemble strategy, such as boosting and
stacking [20], [21] in order to get the best accuracy is not the
most important goal for this project.

The intuition behind this formulation is to constraint the
weights such that, their sum is always equal to one and each
weight is between 1 and 0. This allows us to see the changes of
importance over time in an incremental setup. Mathematically,
the goal is to find the optimal weight which in turn minimizes
the generalisation error of the ensemble pair, this can be
achieved through empirical risk minimisation through a loss
function of the form (f(x)c, y) −→ l(f c(x), y) ∈ R, which
maps the effect of having different weights values onto a real
number representing some cost. Similar results in the clas-
sification/regression context have been discussed extensively
in [22], and recently in [23] and [24]. We employ similar
mathematical techniques and apply it in the sequential labeling
context. Therefore, the goal is to find the optimal weight
parameter which minimizes a cost. The log loss or the cross
entropy loss is commonly used in many learning algorithms
such as logistic regression, gradient boosting, artificial neural
networks etc. This is represented as:

Log loss = −
N∑
i=1

K∑
k=1

yij log(f
c
ij) (2)

A drawback with using the log loss function for optimising
our combination function is encountered when trying to solve
for a closed form solution of the weights. As it turns out, the
derivative of this function is a rational function (please see a
detailed derivation in Appendix B).

0 = −
N∑
i=1

K∑
k=1

yij(f1ij)− f2ij))

wf1ij + (1− w)f2ij
(3)

For which, there is no analytical solution as soon as N ≥
5. The numerator is a N degree polynomial and as such it



cannot be solved using radicals. This is shown through the
Abel-Ruffini theorem which naively states that at degrees > 4
a general formula gets to complicated to solve, this can be
shown through Galois theory. In such cases we need numerical
optimisation to solve for the roots, which in most cases is
perfectly feasible. However, want to find a simple closed form
solution for the weights, which can be efficiently used for
incremental updating.

As an alternative, we consider the Brier Scoring function as
a possible candidate for calculating the loss. A version of the
brier score in multi-class problems is formulated as:

Brier Score =

N∑
i=1

K∑
j=1

(f c
ij − yij)

2 (4)

As indicated in the expression above, the Brier score
measures the mean squared difference between the predicted
probabilities for some instance i and the actual value. Using
this loss function, we can formulate the objective function for
our minimisation problem as follows:

arg minw =

N∑
i=1

K∑
j=1

((wf1ij + (1− w)f2ij )− yij)
2 (5)

Its worth noting, that by using 1 − w for f2 we have
also reduced the optimisation problem to a single variable.
Furthermore, this also acts as constraint on the function,
deterring the need to explicitly define the weight constraints.
As such, despite being a constrained problem, we are able
to minimise this objective function without using Lagrange
multipliers or the KKT strategy. Taking the derivative of the
function above w.r.t w and solving for the roots, yields the
closed form solution for the weights:

w =

∑
X

∑
(y − f2(x)(f1(x)− f2(x))∑
X

∑
(f1(x)− f2(x))2

(6)

A detailed derivation of the above solution can be found
in Appendix A. Optimising the Brier score for estimating
parameters is not very common in machine learning tasks.
There are two main reasons for this, particularly, the log loss
incurs a higher penalty when low probabilities are predicted
for the correct class. Also, in the case of binary logistic
regression the sigmoid function with the squared loss results in
a non-convex objective function which can be hard to optimise.
However in our case, the objective function is still convex and
showed similar optimal w to the log-loss. Moreover, there is
a close relationship between the log loss and the brier score,
which is revealed through the Taylor series expansion of the
losses.

BS = (y − 1)2 − 2(y − 1)(x− 1) +
2(x− 1)2

2!

= (x− 1) +
2(x− 1)2

2!

Log Loss ≈
∞∑

n=1

(−1)n ((n− 1)!)y(x− 1)n

n!

= y(x− 1) +
y(x− 1)2

2!
...

= (x− 1) +
(x− 1)2

2!
...

Log Loss ≈ 1

2
BS + c

(7)

By expanding the second degree Taylor polynomial for
the brier score and Taylor series expansion for the log loss
(centered around 1) and having the constant c to account for
the remaining terms in the Taylor series. We can observe that
the relationship between the two losses is approximately linear,
please see Eq. (7).

B. Incremental Learning

Our motivation for incremental learning has been previously
discussed. In this section, we demonstrate our approach to
dynamically adjust the ensemble weights as new training
samples arrive. The first phase is to train the base learners
f1 and f2. Not all algorithms have support for incremental
learning, i.e. learning without seeing all examples at once. In
such cases, one approach is to concatenate new samples to the
previous training data and retrain the model every time new
data arrives. However, in the case of deep learning algorithms,
this approach can be very time consuming. Given the scope
of our project, as our goal is to study the effectiveness of the
ensemble, we take a model-agnostic approach with the only
restriction being the ensemble consisting of a model based and
a rule based algorithm. As such, f1 can be a relatively heavy
static algorithm trained on a public dataset, incrementally
updated with new data upon the arrival of new samples. Here,
f2 can be a soft-rule-based online learning algorithm trained
incrementally with mini-batches of NZ dataset. Following
this, at every increment, we calculate and update the weight
w using Eq. (6). There are several implementation options
for estimating the weights in an incremental learning setup,
we can have an entirely separate validation set, used for
predictions at every increment. Alternatively, new incoming
batches can also be used as validation sets and in subsequent
iterations, they can be used for training the classifiers. For
our task at hand, we have considered the latter approach to
maximise the utility of all available data.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

Our evaluations of the prescribed methodology are per-
formed on the publicly available i2b2 dataset and a local
dataset collected in New Zealand (NZ).

The i2b2 dataset is a voluminous collection of clinical nar-
ratives introduced by the Informatics for Integrating Biology



Fig. 1: Illustration of the proposed incremental learning setup

and the Bedside centre [1]. In total, there are 658,987 word
tokens, 32,759 sentences and 25 entity types, inclusive of the
twelve types as defined by the Health Insurance Portability
and Accountability Act (HIPAA) [25].

The NZ data was collected through a partnership with a
local district health board (DHB), with the goal of creating
a dataset for building a de-identification tool that highlights
PHI in chucks of text in the portable document (PDF) and
Word document formats. We were able to obtain a set of
documents prior to the COVID-19 lockdown in New Zealand.
Although the plan was to create 20 documents, our clinical
partners had to stop the task as the team needed to re-schedule
work priorities due to COVID-19. About the documents we
use for experiments, they are semi-synthetic (rewritten by
clinicians based on original documents) communication letters
between clinicians and nurses about patients with diabetes. The
annotators (clinicians) applied a substitution approach to de-
identification so the documents are realistic enough to be used
for our research.

Next, we describe how we converted the documents. The
NZ dataset is composed of 15 clinical documents with PHIs
annotated according to the HIPAA convention. The entity
types were grouped into seven main classes, Name, Profession,
Location, Age, Date, Contact and ID. For consistency, the 25
entity types of the i2b2 dataset were also aggregated into the
same seven categories. Tokens were also chunked according to
BILOU schema, to identify when entities spans over several
tokens. Using this format, the beginning token was labeled
as B, tokens inside the entity span as I and the last token
in line as L. Singular entity tokens were labeled as S and
finally non-entities (non PHIs) as O. Henceforth, empty tokens,
surrounding whitespace and other types of low level formatting
was also performed to ensure dataset compatibility. Tokens

were also assigned into Part of Speech (POS) categories
according to the universal POS tagset. Following the analogous
prepossessing, the PHI distribution for both datasets is shown
in Table I.

TABLE I: Distribution of PHI types of the i2b2 and NZ
datasets.

i2b2 Dataset NZ Dataset
Count % of PHI Count % of PHI

Name 7546 29.72 198 42.2
Location 4326 17.03 117 24.9
Date 11609 45.72 56 11.9
Contact 557 2.19 41 8.7
Profession 356 1.40 33 7
ID 176 0.69 19 4
Age 819 3.22 5 1

Additionally, we also created second version of the datasets
to solely represent direct and quasi identifiers, which is to
support a slightly different de-identification use case. This
distinction is attributed to the nature of the PHI, where direct
identifiers are “unique” which can be used to re-identify a
patient. While, quasi identifiers are not unique in themselves,
they can be sufficiently correlated with other identifiers to
form a unique identifier. Which again poses the risk of re-
identification. In this case, name, contact and ID were labelled
as direct identifiers. While, the quasi identifiers included date,
location, profession and age. We refer to this set as the
‘Direct/Quasi’ datasets shown in Table II.

TABLE II: Distribution of PHI types in the Direct/Quasi
version of the datasets.

i2b2 Dataset NZ Dataset
Count % of PHI Count % of PHI

Direct 8516 33.07% 407 58.14%
Quasi 17233 66.92% 293 41.85%

For the base ensemble learners, we first examine the CRF
algorithm [5] which is widely used in named entity recog-
nition tasks. As specified earlier, CRF aims infer labels Y
given a sequence of observed tokens X . The model training
phase, aims to learn the distributions between y1, y2...yn and
x1,x2...xn, p(Y |X). The goal of inference is to determine
the most likely sequence Y given X . CRFs also utilize L1
and L2 regularisation to penalize the objective function whilst
training. Larger values diminish and nullify features such
that the algorithm learns to generalise and does not depend
on memorisation. These parameters are tuned through hyper
parameter optimisation.

Rule based methods utilize dictionary lookups, pattern
matching and regular expressions to identify tokens of interest.
However, this approach requires linguistic domain experts to
manually create pattern rules and dictionaries. Alternatively,
we can also use a supervised learning algorithm to simulate
the behaviour of a rule based approach. The incremental Naive
Bayes algorithm [26], is a probabilistic model formulated



through the bayes theorem. The goal is to determine the
probability that a particular token has a label yi given some
features xi. We can do this by calculating the posterior
probabilities given by the bayes rule:

P (yi|xi) =
P (xi|xi) · P (yi)

P (xi)

Under the naive assumption of conditional independence
we can efficiently calculate the posteriors as the product
of likelihoods and the priors. Thereafter, we can obtain the
predicted labels using decision rules as illustrated in the
following simplified example:

If P (phi|xi) ≥ P (not− phi|xi)

classify as ‘PHI’
else

classify as ‘Not-PHI’

Where phi and not − phi are the labels and xi is the
observed data (features). To simulate the behaviour of a rule
based algorithm we extract the following features from the
data.

1) Orthographic features: Defines word characteristics
such as whether the word is all upper, mixed or lower
case, contains digits, punctuation.

2) POS tags: Part of Speech tags for the previous, current
and the next tokens.

3) Affixes: Suffixes and prefixes of all words from length
2 to 3.

4) Section information: The distance of current word from
the beginning of the sentence.

5) Bag-of-words: lower case of the current token and stem
words for the surrounding tokens.

In de-identification, there are two types of evaluations, the
token level or the entity level. The difference between two
methods pertains to the position constraint by the BILOU
schema of particular entities. At token level evaluation, each
label is evaluated as a single entity, while entity level evalua-
tion considers the entire span of the named entity. For example,
in this sample sentence “35 sample st” ‘35’, ‘sample’ and
‘st’ are separate tokens. Evaluating this at token level, we
consider predictions for each token one by one, meaning if
one of these tokens is mislabelled only that particular token
is penalised. However, at entity level, the entire named entity
will be considered as the wrong prediction. Interchangeably, if
all tokens in a named entity are correctly labelled only then it
is considered the right prediction. We have preferred the latter
approach as we want cover the entire span of the Protected
Health Information. To evaluate the performance of our de-
identification system we utilize the the F1-score metrics.

B. Ensemble Performance in a Stationary Setup

We first evaluate the proposed ensemble method in a sta-
tionary setup using the closed form solution (Eq. (6)) of the
weights. Our motivation is to compare ensemble performance
with individual base learners trained on different versions of

the datasets. The datasets under consideration are the HIPAA
and the Direct/Quasi versions of the i2b2 and NZ datasets. The
datasets were split into 60% training, 20% validation, 20%
test sets. The validation set was used to estimate the ensemble

Fig. 2: Comparison of predictions from individual base learn-
ers and ensemble in a stationary setup

weights and the test set was used for final evaluation of the
model performance. An example of estimating the weight on a
validation set and using it for ensemble predictions on the test
set is shown in the appendix section Fig 7. This experiment
was repeated 20 times, the mean and the standard deviations
for this are shown in Fig 2. For i2b2 datasets (HIPAA
and the Direct/Quasi versions) there is disparity between the
performance of CRF and incremental Naive Bayes. As a result,
the ensemble F1 scores are only slightly higher in comparison
with CRF (the best performing base learner). However, in the
NZ dataset (HIPAA and Direct/Quasi) CRF and Naive Bayes
performances are matched more closely hence, the ensemble
performs better by exploiting the disagreements between the
predictions. The results from Fig 2 are also tested using the
Wilcoxon signed-rank test [27]. (see Appendix).



Fig. 3: F1 scores from incrementally learning the I2B2 dataset

C. Incremental Learning on the i2b2 and NZ Dataset

The incentive of this subsection is to verify, whether the
ensemble performs better than the base learners in an in-
cremental learning setup. Here, we consider both versions
of the NZ and the i2b2 datasets separately. For the i2b2
datasets, we have two versions of the dataset as described
earlier, namely, I2B2-HIPAA and I2B2-Direct/Quasi. In this
experiment, 20% of the total observations were reserved for
testing, while CRF and incremental Naive Bayes were trained
on batches of 1000 sentences in every iteration. The ensemble
weights were updated in each iteration using the next chunk of
incoming data, not yet used for training. Finally, the estimated
weight was used to combine the base learner predictions on
the reserved 20% test set in every increment. The experiment
is repeated 20 times and we calculate the mean and confidence
intervals for the F1 scores. Figure 3 shows the mean F1
scores obtained from the ensemble predictions and the two
base learners. We can observe that the ensemble F1 scores
are always higher than the base learners. Although, in this
case, there is not a substantial improvement as incremental
Naive Bayes performs poorly compared to CRF. The perfor-
mance ability of the ensemble is directly contingent upon
the individual performances and the dissimilarities between
the two base learners, as such, to augment the ability of the
ensemble both learners need to have small error while giving

Fig. 4: F1 scores from incrementally learning the NZ dataset

different predictions from each other. For the NZ datasets (NZ-
HIPAA and NZ-Direct/Quasi) we use a similar setup to the
previous experiment, in every iteration, 25 sentences are added
to training corpus and the models are retrained. As shown in
Fig 4, In both version the HIPAA and Direct/Quasi dataset,
the ensemble of base learners has a higher mean F1-score over
the course of all iterations. Furthermore, we can observe that
initially Incremental Naive Bayes performed better but as new
data comes in CRF starts performing better, however, this does
not effect the performance of the ensemble. This describes the
dynamic behaviour of our proposed method, which is able to
adapt and prefer an algorithm which contributes in minimizing
the generalisation error.

D. Incremental Learning on the NZ+I2B2 Dataset

Previously we have considered the i2b2 and NZ datasets
separately, for the following experiment we use i2b2 as the ini-
tial training data for f1 (CRF) as described in Figure 1. When
learning the NZ data by itself CRF initially performs worse
and as more data comes in it starts to outperform incremental
Naive Bayes. This drives our motivation to provide CRF with
an initial boost using the i2b2 dataset (similar to the concept
of transfer learning) and study how it effects the ensemble
predictions. In this regard, CRF is initially trained on i2b2 and
incrementally updated with batches of 30 sentences from the



Fig. 5: F1 scores from initial training on the I2B2 and
incrementally learning the NZ dataset

NZ dataset. While, incremental Naive Bayes is only trained on
the NZ dataset with the same batches of 30 sentences. As with
previous experiments, we implement this on both the HIPAA
and the Direct/Quasi versions of the datasets.

Fig 5, shows that for the first few iterations, CRF and
consequently the ensemble performance, improves with the
addition of i2b2. In Fig 4 we saw that initially incremental
Naive Bayes had a higher F1 score but with the inclusion
of i2b2 plus more NZ data, CRF starts to perform better.
In both cases, our method is able to adapt to these changes
which results in higher ensemble F1-Scores. To take a deeper
look at how this works, we examine the estimated weights
for the ensemble outputs shown in Fig 5. The incremental
weight updates with respect to f1 (CRF) are shown in Fig 6.
For the Direct/Quasi dataset, during the first few increments
we see that CRF performs much better than incremental
Naive Bayes and as such it incurs higher weight, as the
performance of the two learners gets close, the weights
decrease. When the performances of the algorithms match
we see that the ensemble still performs better by taking
advantage of the dissimilarities between the learners. Similarly,
for the HIPAA version, when there is disparity between the
performances of the base learners, more weight is given to
the best performing algorithm. When the both algorithms start

to perform similarly, the weights decrease. As demonstrated
through this experiment, initial training on a public dataset
leads better performance in the first few increments. This can
be a useful feature for a de-identification tool to improve initial
model performance when local data is scarce and accumulates
incrementally. However, in the long run and among the final
iterations, the inclusion of i2b2 does not seem improve the
model performance. Overall, we have seen that the ensemble
generally performs better than the individual base learners over
all iterations in both versions of the datasets. The Direct/Quasi
datasets always performed better in the described experimental
setups, in the specific use case where it is not required to
distinguish between different PHIs it is more beneficial to use
this set.

Fig. 6: Evolution of weights for f1 over increments

V. LIMITATIONS

Although, we have presented a simple framework for incre-
mental de-identification on NZ clinical texts, our study may
be subject to potential limitations. Constrained by the time
available for the task, we have considered simple lexical and
orthographic features and did not exploit the full characteris-
tics of the corpus for the soft rule leaner (simulated by Naive
Bayes). With better and more general features we would expect
the soft rule leaner to perform better and consequently expect
the ensemble performance to ascend. To estimate the weights



we have used a validation set with an assumption that it is
similar to the test set. A possible downside to this is that, if
the test set changes, then the validation set should also reflect
these changes. In practical applications, it would be wise to
reserve some documents which are very similar to the test set
for the sole purpose of estimating the weights. We have only
evaluated the model performances on the F1 scores. In the
data privacy context, re-identification risk is probably more
important in certain applications. Therefore, the performance
should be evaluated on a risk score as well, a candidate is the
method proposed in [28], which accurately reflect the risk of a
patient being re-identified. However, the risk-based evaluation
methods work on the document level, which requires more
data than we currently have for the case study.

VI. CONCLUSION

Given the voluminous size of clinical datasets, the con-
cept of automated de-identification is a highly appealing
prospect. Machine learning algorithms and rule-based algo-
rithms are among the most effective approaches to automated
de-identification. In this paper, we discussed an ensemble
framework for dynamically combining machine learning and
rule-based models in an incremental learning setup, which may
speed up transfer learning given a relatively small amount of
new data. We provided a case study based on a New Zealand
clinical dataset. Evaluations show that our approach can ac-
commodate for changes in the incoming data through dynamic
updating. The simplicity of the framework also allowed us to
see and gain insights on behaviour e.g. change of importance
between the machine learning and rule models. In the future,
we will continue with our DHB partners on obtaining more
data. Algorithm-wise, we have several planned works, includ-
ing employing more advanced ensemble strategies based on
the trust of our clinical advisors and developers on combining
machine learning and rule-based models. Furthermore, we
will try replacing the simple and easy to interpret CRF with
a current state-of-art deep learning algorithm, for instance,
the BERT [29] and transformer [30] powered deep learning
architecture [6] with a CRF output layer.
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APPENDIX

In this section, we cover proofs for mathematical claims in
the paper, details on significance tests and additional figures.

A. Derivation of the weight equation for Brier score
K∑
i=1

K∑
j=1

(fc
ij − yij)

2

∂

∂p
=

∑
X

∑
(wf1(x) + (1− w)f2(x)− y)2

=
∑
X

∑
2(wf1(x) + (1− w)f2(x)− y)(f1(x)− f2(x))

0 = 2
∑
X

∑
(w(f1(x)− f2(x))

2 + (f2(x)− y))(f1(x)− f2(x))

w =

∑
X

∑
−f1(x)f2(x) + f1(x)y + f2(x)

2 − f2(x)y∑
X

∑
f1(x)2 − 2f1(x)f2(x) + f2(x)2

w =

∑
X

∑
(y − f2(x))(f1(x)− f2(x))∑
X

∑
(f1(x)− f2(x))2

∂2

∂p2
=

∂

∂p

∑
X

∑
2(wf1(x) + (1− w)f2(x)− y)(f1(x)− f2(x))

Using the product rule we get :

=
∑
X

∑
(2f1(x)− 2f2(x))(f1(x)− f2(x))

=
∑
X

∑
2(f1(x)− 2f2(x))

2

The range of f1(x) and f2(x) is Xd where x ∈ [0, 1] so as

∂2

∂p2
≥ 0, the sufficient condition for convexity holds.

B. Derivation of the weight equation for Log-Loss

−
N∑
i=1

K∑
k=1

yij log(f
c
ij)

∂L

∂p
= −

N∑
i=1

K∑
k=1

yij log(wf1(x) + (1− w)f2(x))

= −
∑
X

∑ yij(f1(x)− f2(x))

wf1(x) + (1− w)f2(x)

0 = −
∑
X

∑ yij(f1(x)− f2(x))

wf1(x) + (1− w)f2(x)

Solving at 0 yields, N − 1 solutions. We can solve for the
root through newtons method by providing a good starting
point within a suitable search interval.

C. Significance Tests

Version Dataset Task P-Value
HIPAA NZ CRF vs Ensemble 2.6297e-05

INB vs Ensemble 4.1490e-06
i2b2 CRF vs Ensemble 0.001885

INB vs Ensemble 4.4287e-05
Direct/Quasi NZ CRF vs Ensemble 0.0079

INB vs Ensemble 8.2980e-06
i2b2 CRF vs Ensemble 0.000156

INB vs Ensemble 1.2290e-05

TABLE III: P-values from the Wilcoxon signed-rank test

The null hypothesis is that the base learning algorithm per-
forms better than the ensemble, while the alternative hypoth-
esis is that ensemble performs better. At the 5% confidence
level, in all cases, we reject the null and accept the alternative
hypothesis.

D. Weight Estimation

Fig. 7: Brier Score loss (top) and F1 scores (bottom) of the
ensemble on the test set given different weight values. The
dashed vertical line is the estimated weight on the validation
set. The charts are generated from the HIPAA version of the
NZ data set as an example. Similar charts can be obtained
from other datasets.


